On principle values of Martinelli--Bochner integral in strictly pseudoconvex domains
Sibirskie èlektronnye matematičeskie izvestiâ, Tome 7 (2010), pp. 132-139.

Voir la notice de l'article provenant de la source Math-Net.Ru

It is derived that principal values v.p. and v.p.h. of the Bochner–Martinelli integral are equal.
Keywords: Bochner–Martinelli integral, principal value of integral, strictly pseudoconvex domains.
@article{SEMR_2010_7_a13,
     author = {A. S. Katsunova},
     title = {On principle values of {Martinelli--Bochner} integral in strictly pseudoconvex domains},
     journal = {Sibirskie \`elektronnye matemati\v{c}eskie izvesti\^a},
     pages = {132--139},
     publisher = {mathdoc},
     volume = {7},
     year = {2010},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/SEMR_2010_7_a13/}
}
TY  - JOUR
AU  - A. S. Katsunova
TI  - On principle values of Martinelli--Bochner integral in strictly pseudoconvex domains
JO  - Sibirskie èlektronnye matematičeskie izvestiâ
PY  - 2010
SP  - 132
EP  - 139
VL  - 7
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/SEMR_2010_7_a13/
LA  - ru
ID  - SEMR_2010_7_a13
ER  - 
%0 Journal Article
%A A. S. Katsunova
%T On principle values of Martinelli--Bochner integral in strictly pseudoconvex domains
%J Sibirskie èlektronnye matematičeskie izvestiâ
%D 2010
%P 132-139
%V 7
%I mathdoc
%U http://geodesic.mathdoc.fr/item/SEMR_2010_7_a13/
%G ru
%F SEMR_2010_7_a13
A. S. Katsunova. On principle values of Martinelli--Bochner integral in strictly pseudoconvex domains. Sibirskie èlektronnye matematičeskie izvestiâ, Tome 7 (2010), pp. 132-139. http://geodesic.mathdoc.fr/item/SEMR_2010_7_a13/

[1] L. A. Aizenberg, A. P. Yuzhakov, Integralnye predstavleniya i vychety v mnogomernom kompleksnom analize, Nauka, Novosibirsk, 1979 | MR

[2] A. M. Kytmanov, Integral Bokhnera–Martinelli i ego prilozheniya, Nauka, Novosibirsk, 1992

[3] A. M. Kytmanov, S. G. Myslivets, “O glavnom znachenii po Koshi osobogo integrala Khenkina–Ramireza v strogo psevdovypuklykh oblastyakh prostranstva $\mathbb{C}^n$”, Sibirskii matematicheskii zhurnal, 46:3 (2005), 625–633 | MR

[4] M. Bilz, Ch. Feffermen, R. Grossman, Strogo psevdovypuklye oblasti v $\mathbb{C}^n$, Mir, Moskva, 1987

[5] G. M. Khenkin, “Metod integralnykh predstavlenii v kompleksnom analize”, Sovremennye problemy matematiki. Fundamentalnye napravleniya, 7, 1985, 23–124 | MR | Zbl

[6] W. Alt, “Singuläre integrale mit gemischten homogenitäten auf mannigrfaltigkeiten und anwendungen in der funktionentheorie”, Math. Z., 137 (1974), 227–256 | DOI | MR | Zbl

[7] N. Kerzman, E. M. Stein, “The Szegő kernel in terms of Cauchy–Fantappié kernels”, Duke Math. J., 45:2 (1978), 197–224 | DOI | MR | Zbl