Uniqueness of the prime graph of $\mathrm{L}_{16}(2)$
Sibirskie èlektronnye matematičeskie izvestiâ, Tome 7 (2010), pp. 119-121

Voir la notice de l'article provenant de la source Math-Net.Ru

We complete the proof that the simple group $\mathrm{L}_{16}(2)$ is uniquely determined by its prime graph among all finite groups thus giving the first example of a recognizable-by-graph group whose prime graph is connected. We bridge the gap in the argument from [1] which purported to establish the same result.
Keywords: finite simple groups, prime graph, recognition.
@article{SEMR_2010_7_a11,
     author = {Andrei V. Zavarnitsin},
     title = {Uniqueness of the prime graph of $\mathrm{L}_{16}(2)$},
     journal = {Sibirskie \`elektronnye matemati\v{c}eskie izvesti\^a},
     pages = {119--121},
     publisher = {mathdoc},
     volume = {7},
     year = {2010},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SEMR_2010_7_a11/}
}
TY  - JOUR
AU  - Andrei V. Zavarnitsin
TI  - Uniqueness of the prime graph of $\mathrm{L}_{16}(2)$
JO  - Sibirskie èlektronnye matematičeskie izvestiâ
PY  - 2010
SP  - 119
EP  - 121
VL  - 7
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/SEMR_2010_7_a11/
LA  - en
ID  - SEMR_2010_7_a11
ER  - 
%0 Journal Article
%A Andrei V. Zavarnitsin
%T Uniqueness of the prime graph of $\mathrm{L}_{16}(2)$
%J Sibirskie èlektronnye matematičeskie izvestiâ
%D 2010
%P 119-121
%V 7
%I mathdoc
%U http://geodesic.mathdoc.fr/item/SEMR_2010_7_a11/
%G en
%F SEMR_2010_7_a11
Andrei V. Zavarnitsin. Uniqueness of the prime graph of $\mathrm{L}_{16}(2)$. Sibirskie èlektronnye matematičeskie izvestiâ, Tome 7 (2010), pp. 119-121. http://geodesic.mathdoc.fr/item/SEMR_2010_7_a11/