Uniqueness of the prime graph of $\mathrm{L}_{16}(2)$
Sibirskie èlektronnye matematičeskie izvestiâ, Tome 7 (2010), pp. 119-121.

Voir la notice de l'article provenant de la source Math-Net.Ru

We complete the proof that the simple group $\mathrm{L}_{16}(2)$ is uniquely determined by its prime graph among all finite groups thus giving the first example of a recognizable-by-graph group whose prime graph is connected. We bridge the gap in the argument from [1] which purported to establish the same result.
Keywords: finite simple groups, prime graph, recognition.
@article{SEMR_2010_7_a11,
     author = {Andrei V. Zavarnitsin},
     title = {Uniqueness of the prime graph of $\mathrm{L}_{16}(2)$},
     journal = {Sibirskie \`elektronnye matemati\v{c}eskie izvesti\^a},
     pages = {119--121},
     publisher = {mathdoc},
     volume = {7},
     year = {2010},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SEMR_2010_7_a11/}
}
TY  - JOUR
AU  - Andrei V. Zavarnitsin
TI  - Uniqueness of the prime graph of $\mathrm{L}_{16}(2)$
JO  - Sibirskie èlektronnye matematičeskie izvestiâ
PY  - 2010
SP  - 119
EP  - 121
VL  - 7
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/SEMR_2010_7_a11/
LA  - en
ID  - SEMR_2010_7_a11
ER  - 
%0 Journal Article
%A Andrei V. Zavarnitsin
%T Uniqueness of the prime graph of $\mathrm{L}_{16}(2)$
%J Sibirskie èlektronnye matematičeskie izvestiâ
%D 2010
%P 119-121
%V 7
%I mathdoc
%U http://geodesic.mathdoc.fr/item/SEMR_2010_7_a11/
%G en
%F SEMR_2010_7_a11
Andrei V. Zavarnitsin. Uniqueness of the prime graph of $\mathrm{L}_{16}(2)$. Sibirskie èlektronnye matematičeskie izvestiâ, Tome 7 (2010), pp. 119-121. http://geodesic.mathdoc.fr/item/SEMR_2010_7_a11/

[1] B. Khosravi, B. Khosravi, B. Khosravi, “A characterization of the finite simple group $L_{16}(2)$ by its prime graph”, Manuscr. Math., 126:1 (2008), 49–58 | DOI | MR | Zbl

[2] J. S. Williams, “Prime graph components of finite groups”, J. Algebra, 69:2 (1981), 487–513 | DOI | MR | Zbl

[3] M. Hagie, “The prime graph of a sporadic simple group”, Commun. Algebra, 31:9 (2003), 4405–4424 | DOI | MR | Zbl

[4] A. V. Zavarnitsine, “On recognition of finite groups by the prime graph”, Algebra and Logic, 45:4 (2006), 220–231 | DOI | MR | Zbl

[5] J. C. Jantzen, Representations of algebraic groups, Mathematical Surveys and Monographs, 107, Second edition, American Mathematical Society, Providence, RI, 2003 | MR | Zbl

[6] A. V. Zavarnitsine, “Properties of element orders in covers for ${\rm L}_n(q)$ and ${\rm U}_n(q)$”, Sib. Math. J., 49:2 (2008), 246–256 | DOI | MR | Zbl

[7] R. Steinberg, Lectures on Chevalley Groups, Yale University, New Haven, 1968 | MR | Zbl

[8] A. V. Zavarnitsine, Fixed points of large prime-order elements in equicharacteristic action of linear and unitary groups, in preparation