Extending pairings to Hamiltonian cycles
Sibirskie èlektronnye matematičeskie izvestiâ, Tome 7 (2010), pp. 115-118
Cet article a éte moissonné depuis la source Math-Net.Ru
Recently J. Fink proved that every $1$-factor of the complete graph on the vertex set of the hypercube $Q_n$ can be extended to a cycle by adding some edges of this hypercube. We prove that, for $n\ge4$, one can remove some edges of $Q_n$ so that the resulting graph still has this property. Also we give upper and lower bounds on the minimum number of edges of a $2n$-vertex graph having this property.
Keywords:
$1$-factor, Hamiltonian cycle, Kreweras Conjecture
Mots-clés : hypercube.
Mots-clés : hypercube.
@article{SEMR_2010_7_a10,
author = {D. G. Fon-Der-Flaass},
title = {Extending pairings to {Hamiltonian} cycles},
journal = {Sibirskie \`elektronnye matemati\v{c}eskie izvesti\^a},
pages = {115--118},
year = {2010},
volume = {7},
language = {en},
url = {http://geodesic.mathdoc.fr/item/SEMR_2010_7_a10/}
}
D. G. Fon-Der-Flaass. Extending pairings to Hamiltonian cycles. Sibirskie èlektronnye matematičeskie izvestiâ, Tome 7 (2010), pp. 115-118. http://geodesic.mathdoc.fr/item/SEMR_2010_7_a10/