Automorphisms of strongly regular graph, in which neighborhoods of vertices are pseudogeometric graphs for $pG_2(4,9)$
Sibirskie èlektronnye matematičeskie izvestiâ, Tome 6 (2009), pp. 110-119.

Voir la notice de l'article provenant de la source Math-Net.Ru

Let $\Gamma$ be a strongly regular graph with parameters $(210,95,40,45)$. In this work it is obtained possible orders and subgraphs of fixed points automorphisms of $\Gamma$ in the case, when $[a]$ is a point graph of partial geometry $pG_2(4,9)$ for every vertex $a$ of $\Gamma$.
Keywords: strongly regular graph, neighborhood of vertices.
Mots-clés : automorphism
@article{SEMR_2009_6_a5,
     author = {N. V. Chuksina},
     title = {Automorphisms of strongly regular graph, in which neighborhoods of vertices are pseudogeometric graphs for $pG_2(4,9)$},
     journal = {Sibirskie \`elektronnye matemati\v{c}eskie izvesti\^a},
     pages = {110--119},
     publisher = {mathdoc},
     volume = {6},
     year = {2009},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/SEMR_2009_6_a5/}
}
TY  - JOUR
AU  - N. V. Chuksina
TI  - Automorphisms of strongly regular graph, in which neighborhoods of vertices are pseudogeometric graphs for $pG_2(4,9)$
JO  - Sibirskie èlektronnye matematičeskie izvestiâ
PY  - 2009
SP  - 110
EP  - 119
VL  - 6
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/SEMR_2009_6_a5/
LA  - ru
ID  - SEMR_2009_6_a5
ER  - 
%0 Journal Article
%A N. V. Chuksina
%T Automorphisms of strongly regular graph, in which neighborhoods of vertices are pseudogeometric graphs for $pG_2(4,9)$
%J Sibirskie èlektronnye matematičeskie izvestiâ
%D 2009
%P 110-119
%V 6
%I mathdoc
%U http://geodesic.mathdoc.fr/item/SEMR_2009_6_a5/
%G ru
%F SEMR_2009_6_a5
N. V. Chuksina. Automorphisms of strongly regular graph, in which neighborhoods of vertices are pseudogeometric graphs for $pG_2(4,9)$. Sibirskie èlektronnye matematičeskie izvestiâ, Tome 6 (2009), pp. 110-119. http://geodesic.mathdoc.fr/item/SEMR_2009_6_a5/

[1] Makhnev A. A., “O grafakh, okrestnosti vershin kotorykh silno regulyarny s $k=2\mu$”, Matem. sbornik, 191:7 (2000), 89–104 | MR | Zbl

[2] Makhnev A. A., Chuksina N. V., “Ob avtomorfizmakh silno regulyarnogo grafa s parametrami (210,95,40,45)”, VII Mezhdunarodnaya shkola konferentsiya po teorii grupp, Inform. materialy, Izd-vo YuUrGU, 2008, 78–79

[3] Makhnev A. A., Chuksina N. V., “Ob avtomorfizmakh silno regulyarnogo grafa s parametrami (95,40,12,20)”, Trudy 40-i Vseross. molod. konf., Izd-vo IMM UrO RAN, Ekaterinburg, 2009, 46–47

[4] Brouwer A. E., Cohen A. M., Neumaier A., Distance-regular graphs, Springer-Verlag, Berlin etc., 1989 | MR