Automorphisms of strongly regular graph, in which neighborhoods of vertices are pseudogeometric graphs for $pG_2(4,9)$
Sibirskie èlektronnye matematičeskie izvestiâ, Tome 6 (2009), pp. 110-119
Voir la notice de l'article provenant de la source Math-Net.Ru
Let $\Gamma$ be a strongly regular graph with parameters $(210,95,40,45)$. In this work it is obtained possible orders and subgraphs of fixed points automorphisms of $\Gamma$ in the case, when $[a]$ is a point graph of partial geometry $pG_2(4,9)$ for every vertex $a$ of $\Gamma$.
Keywords:
strongly regular graph, neighborhood of vertices.
Mots-clés : automorphism
Mots-clés : automorphism
@article{SEMR_2009_6_a5,
author = {N. V. Chuksina},
title = {Automorphisms of strongly regular graph, in which neighborhoods of vertices are pseudogeometric graphs for $pG_2(4,9)$},
journal = {Sibirskie \`elektronnye matemati\v{c}eskie izvesti\^a},
pages = {110--119},
publisher = {mathdoc},
volume = {6},
year = {2009},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/SEMR_2009_6_a5/}
}
TY - JOUR AU - N. V. Chuksina TI - Automorphisms of strongly regular graph, in which neighborhoods of vertices are pseudogeometric graphs for $pG_2(4,9)$ JO - Sibirskie èlektronnye matematičeskie izvestiâ PY - 2009 SP - 110 EP - 119 VL - 6 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/SEMR_2009_6_a5/ LA - ru ID - SEMR_2009_6_a5 ER -
%0 Journal Article %A N. V. Chuksina %T Automorphisms of strongly regular graph, in which neighborhoods of vertices are pseudogeometric graphs for $pG_2(4,9)$ %J Sibirskie èlektronnye matematičeskie izvestiâ %D 2009 %P 110-119 %V 6 %I mathdoc %U http://geodesic.mathdoc.fr/item/SEMR_2009_6_a5/ %G ru %F SEMR_2009_6_a5
N. V. Chuksina. Automorphisms of strongly regular graph, in which neighborhoods of vertices are pseudogeometric graphs for $pG_2(4,9)$. Sibirskie èlektronnye matematičeskie izvestiâ, Tome 6 (2009), pp. 110-119. http://geodesic.mathdoc.fr/item/SEMR_2009_6_a5/