Voir la notice de l'article provenant de la source Math-Net.Ru
@article{SEMR_2009_6_a5, author = {N. V. Chuksina}, title = {Automorphisms of strongly regular graph, in which neighborhoods of vertices are pseudogeometric graphs for $pG_2(4,9)$}, journal = {Sibirskie \`elektronnye matemati\v{c}eskie izvesti\^a}, pages = {110--119}, publisher = {mathdoc}, volume = {6}, year = {2009}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/SEMR_2009_6_a5/} }
TY - JOUR AU - N. V. Chuksina TI - Automorphisms of strongly regular graph, in which neighborhoods of vertices are pseudogeometric graphs for $pG_2(4,9)$ JO - Sibirskie èlektronnye matematičeskie izvestiâ PY - 2009 SP - 110 EP - 119 VL - 6 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/SEMR_2009_6_a5/ LA - ru ID - SEMR_2009_6_a5 ER -
%0 Journal Article %A N. V. Chuksina %T Automorphisms of strongly regular graph, in which neighborhoods of vertices are pseudogeometric graphs for $pG_2(4,9)$ %J Sibirskie èlektronnye matematičeskie izvestiâ %D 2009 %P 110-119 %V 6 %I mathdoc %U http://geodesic.mathdoc.fr/item/SEMR_2009_6_a5/ %G ru %F SEMR_2009_6_a5
N. V. Chuksina. Automorphisms of strongly regular graph, in which neighborhoods of vertices are pseudogeometric graphs for $pG_2(4,9)$. Sibirskie èlektronnye matematičeskie izvestiâ, Tome 6 (2009), pp. 110-119. http://geodesic.mathdoc.fr/item/SEMR_2009_6_a5/
[1] Makhnev A. A., “O grafakh, okrestnosti vershin kotorykh silno regulyarny s $k=2\mu$”, Matem. sbornik, 191:7 (2000), 89–104 | MR | Zbl
[2] Makhnev A. A., Chuksina N. V., “Ob avtomorfizmakh silno regulyarnogo grafa s parametrami (210,95,40,45)”, VII Mezhdunarodnaya shkola konferentsiya po teorii grupp, Inform. materialy, Izd-vo YuUrGU, 2008, 78–79
[3] Makhnev A. A., Chuksina N. V., “Ob avtomorfizmakh silno regulyarnogo grafa s parametrami (95,40,12,20)”, Trudy 40-i Vseross. molod. konf., Izd-vo IMM UrO RAN, Ekaterinburg, 2009, 46–47
[4] Brouwer A. E., Cohen A. M., Neumaier A., Distance-regular graphs, Springer-Verlag, Berlin etc., 1989 | MR