Voir la notice de l'article provenant de la source Math-Net.Ru
@article{SEMR_2009_6_a4, author = {E. V. Mamontov}, title = {Invariant solutions to dynamic of polytropic gas generated by threedimensional {Lie} subalgebras}, journal = {Sibirskie \`elektronnye matemati\v{c}eskie izvesti\^a}, pages = {53--109}, publisher = {mathdoc}, volume = {6}, year = {2009}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/SEMR_2009_6_a4/} }
TY - JOUR AU - E. V. Mamontov TI - Invariant solutions to dynamic of polytropic gas generated by threedimensional Lie subalgebras JO - Sibirskie èlektronnye matematičeskie izvestiâ PY - 2009 SP - 53 EP - 109 VL - 6 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/SEMR_2009_6_a4/ LA - ru ID - SEMR_2009_6_a4 ER -
E. V. Mamontov. Invariant solutions to dynamic of polytropic gas generated by threedimensional Lie subalgebras. Sibirskie èlektronnye matematičeskie izvestiâ, Tome 6 (2009), pp. 53-109. http://geodesic.mathdoc.fr/item/SEMR_2009_6_a4/
[1] Ovsyannikov L. V., Lektsii po osnovam gazovoi dinamiki, Institut kompyuternykh issledovanii, Moskva, Izhevsk, 2003
[2] Ovsyannikov L. V., Gruppovoi analiz differentsialnykh uravnenii, Nauka, M., 1978 | MR
[3] Cherevko A. A., “Teoretiko-gruppovye resheniya uravnenii gazovoi dinamiki, porozhdennye trekhmernymi podalgebrami”, Sibirskie elektronnye matematicheskie izvestiya, 4 (2007), 553–595 | MR | Zbl
[4] Chupakhin A. P., Barokhronnye dvizheniya gaza: obschie svoistva i podmodeli tipov (1,2) i (1,1), Preprint RAN. Sib. otd-nie. In-t gidrodinamiki, No 4-98
[5] Golod A. A., Chupakhin A. P., “Invariantnye resheniya dinamiki politropnogo gaza, postroennye po trekhmernym algebram simmetrii”, Sibirskie elektronnye matematicheskie izvestiya, 5 (2008), 229–250 | MR
[6] Golovin S. V., Optimalnaya sistema podalgebr dlya algebry Li operatorov, dopuskaemykh uravneniyami gazovoi dinamiki v sluchae politropnogo gaza, Preprint RAN. Sib. otd-nie. In-t gidrodinamiki, No 5-96