Invariant solutions to dynamic of polytropic gas generated by threedimensional Lie subalgebras
Sibirskie èlektronnye matematičeskie izvestiâ, Tome 6 (2009), pp. 53-109.

Voir la notice de l'article provenant de la source Math-Net.Ru

We study group-theoretical solutions to the dynamic equations of polytropic gas. 95 invariant submodels are considered. In a number of cases the factorsystems can be integrated, and several submodels admit constructing partial solutions. This result is applicable in gas dynamics, aerodynamics, and physics of atmosphere.
Keywords: dynamics of polytropic gas, algebra of symmetry.
Mots-clés : invariant solution
@article{SEMR_2009_6_a4,
     author = {E. V. Mamontov},
     title = {Invariant solutions to dynamic of polytropic gas generated by threedimensional {Lie} subalgebras},
     journal = {Sibirskie \`elektronnye matemati\v{c}eskie izvesti\^a},
     pages = {53--109},
     publisher = {mathdoc},
     volume = {6},
     year = {2009},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/SEMR_2009_6_a4/}
}
TY  - JOUR
AU  - E. V. Mamontov
TI  - Invariant solutions to dynamic of polytropic gas generated by threedimensional Lie subalgebras
JO  - Sibirskie èlektronnye matematičeskie izvestiâ
PY  - 2009
SP  - 53
EP  - 109
VL  - 6
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/SEMR_2009_6_a4/
LA  - ru
ID  - SEMR_2009_6_a4
ER  - 
%0 Journal Article
%A E. V. Mamontov
%T Invariant solutions to dynamic of polytropic gas generated by threedimensional Lie subalgebras
%J Sibirskie èlektronnye matematičeskie izvestiâ
%D 2009
%P 53-109
%V 6
%I mathdoc
%U http://geodesic.mathdoc.fr/item/SEMR_2009_6_a4/
%G ru
%F SEMR_2009_6_a4
E. V. Mamontov. Invariant solutions to dynamic of polytropic gas generated by threedimensional Lie subalgebras. Sibirskie èlektronnye matematičeskie izvestiâ, Tome 6 (2009), pp. 53-109. http://geodesic.mathdoc.fr/item/SEMR_2009_6_a4/

[1] Ovsyannikov L. V., Lektsii po osnovam gazovoi dinamiki, Institut kompyuternykh issledovanii, Moskva, Izhevsk, 2003

[2] Ovsyannikov L. V., Gruppovoi analiz differentsialnykh uravnenii, Nauka, M., 1978 | MR

[3] Cherevko A. A., “Teoretiko-gruppovye resheniya uravnenii gazovoi dinamiki, porozhdennye trekhmernymi podalgebrami”, Sibirskie elektronnye matematicheskie izvestiya, 4 (2007), 553–595 | MR | Zbl

[4] Chupakhin A. P., Barokhronnye dvizheniya gaza: obschie svoistva i podmodeli tipov (1,2) i (1,1), Preprint RAN. Sib. otd-nie. In-t gidrodinamiki, No 4-98

[5] Golod A. A., Chupakhin A. P., “Invariantnye resheniya dinamiki politropnogo gaza, postroennye po trekhmernym algebram simmetrii”, Sibirskie elektronnye matematicheskie izvestiya, 5 (2008), 229–250 | MR

[6] Golovin S. V., Optimalnaya sistema podalgebr dlya algebry Li operatorov, dopuskaemykh uravneniyami gazovoi dinamiki v sluchae politropnogo gaza, Preprint RAN. Sib. otd-nie. In-t gidrodinamiki, No 5-96