Near and far. A~centennial tribute to Frigyes Riesz
Sibirskie èlektronnye matematičeskie izvestiâ, Tome 6 (2009), pp. А.1-А.10.

Voir la notice de l'article provenant de la source Math-Net.Ru

This article gives a short history of the concept of near and far during the last one hundred years. It was first formulated by Frederick Riesz at the International Mathematical Congress in Rome (1908). It has been extended and studied by several mathematicians in teaching and research. Applications to general relativity and digital images have been found. A comprehensive bibliography is given.
Keywords: topology, proximity, nearness, calculus teaching, extension of continuous functions, Taimanov theorem, Wallman compactification, hyperspaces, Vietoris topology, proximal topology, Hausdorff metric, general relativity, digital images.
@article{SEMR_2009_6_a33,
     author = {Somashekhar (Som) Naimpally},
     title = {Near and far. {A~centennial} tribute to {Frigyes} {Riesz}},
     journal = {Sibirskie \`elektronnye matemati\v{c}eskie izvesti\^a},
     pages = {{\CYRA}.1--{\CYRA}.10},
     publisher = {mathdoc},
     volume = {6},
     year = {2009},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SEMR_2009_6_a33/}
}
TY  - JOUR
AU  - Somashekhar (Som) Naimpally
TI  - Near and far. A~centennial tribute to Frigyes Riesz
JO  - Sibirskie èlektronnye matematičeskie izvestiâ
PY  - 2009
SP  - А.1
EP  - А.10
VL  - 6
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/SEMR_2009_6_a33/
LA  - en
ID  - SEMR_2009_6_a33
ER  - 
%0 Journal Article
%A Somashekhar (Som) Naimpally
%T Near and far. A~centennial tribute to Frigyes Riesz
%J Sibirskie èlektronnye matematičeskie izvestiâ
%D 2009
%P А.1-А.10
%V 6
%I mathdoc
%U http://geodesic.mathdoc.fr/item/SEMR_2009_6_a33/
%G en
%F SEMR_2009_6_a33
Somashekhar (Som) Naimpally. Near and far. A~centennial tribute to Frigyes Riesz. Sibirskie èlektronnye matematičeskie izvestiâ, Tome 6 (2009), pp. А.1-А.10. http://geodesic.mathdoc.fr/item/SEMR_2009_6_a33/

[AH] P. Alexandroff and H. Hopf, Topologie, v. I, Berlin, 1935

[Be] G. Beer, Topologies on Closed and Closed Convex Sets, Kluwer Academic Publishers, 1993 | MR | Zbl

[Br] M. Brown, “Semi-metric spaces”, Summer Inst. Set Theoretic Topology (Madison, Wisconsin, 1957), 64–66

[CHN] P. Cameron, J. G. Hocking and S. A. Naimpally, “Nearness – a better approach to continuity and limits”, Amer. Math. Monthly, 81 (1974), 739–745 | DOI | MR | Zbl

[DCNS] A. Di Concilio, S. Naimpally and P. Sharma, Proximal Hypertopologies, Sixth Brazilian Topology Meeting, Campinas, Brazil, 1988, unpublished

[De] K. Devlin, Will the real continuous function please stand up?, The Mathematical Association of America, May 2000, MAA Online

[DL] R. Z. Domiaty and O. Laback, “Semimetric spaces in General Relativity (Hawking-King-McCarthy's path topology)”, Russian Math. Surveys, 35:3 (1980), 57–69 | DOI | MR | Zbl

[DN] G. Di Maio and S. Naimpally, “Hit-And-Far-Miss Topologies”, Mat. Vesnik, 60 (2008), 59–78 | MR

[Ef] V. A. Efremović, “Infinitesimal spaces”, Dokl. Akad. Nauk SSSR, 76 (1951), 341–343 | MR | Zbl

[GN1] M. Gagrat and S. A. Naimpally, “Proximity approach to extension problems”, Fund. Math., 71 (1971), 63–76 | MR | Zbl

[GN2] M. Gagrat and S. A. Naimpally, “Proximity approach to semimetric and developable spaces”, Pacific J. Math., 44 (1973), 93–105 | MR | Zbl

[He] H. Herrlich, “A concept of nearness”, Gen. Top. Appl., 4 (1974), 191–212 | DOI | MR | Zbl

[HKM] S. W. Hawking, A. R. King and P. J. McCarthy, “A new topology for curved space-time which incorporates the causal differential, and conformal structures”, J. Mathematical Physics, 17 (1976), 174–181 | DOI | MR | Zbl

[Iv] A. A. Ivanov, “Contiguity relations on topological spaces”, Dokl. Acad. Nauk SSSR, 128 (1959), 33–36 | MR | Zbl

[Ke] J. L. Kelley, General Topology, Van Nostrand Inc., Princeton, NJ, 1955 | MR | Zbl

[Ku] C. Kuratowski, “Sur l'opération A de analyse situs”, Fund. Math., 3 (1922), 182–199 | Zbl

[LP] L. Latecki and F. Prokop, “Semi-proximity continuous functions in digital images”, Pattern Recognition Letters, 16 (1995), 1175–1187 | DOI

[Le1] S. Leader, “On clusters in proximity spaces”, Fund. Math., 47 (1959), 205–213 | MR | Zbl

[Le2] S. Leader, “On products of proximity spaces”, Math. Ann., 154 (1964), 185–194 | DOI | MR | Zbl

[Lo] M. W. Lodato, “On topologically induced generalized proximity relations”, Proc. Amer. Math. Soc., 15 (1964), 417–422 | MR | Zbl

[MN] C. J. Mozzochi and S. A. Naimpally, Uniformity and proximity, Allahabad Mathematical Society, 2009, to be published | MR | Zbl

[Mo] C. J. Mozzochi, “Symmetric generalized topological structures I, II”, Publ. Math. Debrecen, 18 (1971), 239–259 ; 19 (1972), 129–143 | MR | Zbl | MR

[Na] S. Naimpally, Proximity Approach to Problems in Topology and Analysis, Oldenbourg, Germany, 2009 | MR | Zbl

[NW] S. A. Naimpally and B. D. Warrack, Proximity Spaces, Cambridge University Press, 1970 ; Paperback 2008 | MR | Zbl

[OR] J. O'Connor and E. Robertson, Frigyes Riesz (1880–1956), A History of Topology. The MacTutor History of Mathematics archive, University of St Andrews in Scotland http://wwwgroups.dcs.stand.ac.uk/~history/Biographies/Riesz.html

[PK] P. Pták and W. Kropatsch, “Nearness in digital images and proximity spaces”, Discrete Geometry For Computer Imagery, Lecture Notes in Computer Science, 1953, Springer Verlag, 2000, 69–77 | Zbl

[Po] H. Poppe, “Eine Bemerkung uber Trennungsaxiome im Raum der abgeschlossenen Teilmengen eines topologischen Raumes”, Arch. Math., 16 (1965), 197–199 | DOI | MR | Zbl

[RN] F. Riesz and B. Nagy, Functional Analysis, Ungar, New York, 1955

[Sm] Yu. M. Smirnov, “On proximity spaces in the sense of V. A. Efremovic”, Am. Math. Soc., Transl., II. Ser., 38, 1964, 1–4; “On proximity spaces”, 5–35

[Th] W. J. Thron, “Frederic Riesz' contributions to the foundations of general topology”, Handbook of the History of General Topology, v. 1, Kluwer Acad. Publ., Dordrecht, 1997, 21–29 | MR | Zbl

[Ta] A. D. Taimanov, “On extension of continuous mappings of topological spaces”, Mat. Sb., 31 (1952), 459–463 | MR

[Vi] L. Vietoris, “Bereiche zweiter Ordnung”, Monatsh. f. Math., 32 (1922), 258–280 | DOI | MR | Zbl

[Wa] H. Wallman, “Lattices and topological spaces”, Ann. of Math. (2), 39 (1938), 112–126 | DOI | MR

[Wi] R. Wijsman, “Convergence of sequences of convex sets, cones, and functions, II”, Trans. Amer. Math. Soc., 123 (1966), 32–45 | MR | Zbl