Voir la notice de l'article provenant de la source Math-Net.Ru
@article{SEMR_2009_6_a3, author = {E. Yu. Daniyarova}, title = {Metabelian {Lie} $Q$-algebras}, journal = {Sibirskie \`elektronnye matemati\v{c}eskie izvesti\^a}, pages = {26--48}, publisher = {mathdoc}, volume = {6}, year = {2009}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/SEMR_2009_6_a3/} }
E. Yu. Daniyarova. Metabelian Lie $Q$-algebras. Sibirskie èlektronnye matematičeskie izvestiâ, Tome 6 (2009), pp. 26-48. http://geodesic.mathdoc.fr/item/SEMR_2009_6_a3/
[1] E. Yu. Daniyarova, “Metabelevy $U$ algebry Li”, Sibirskie elektronnye matematicheskie izvestiya, 5 (2008), 355–382 | MR
[2] E. Yu. Daniyarova, “$Q$ idealy v koltsakh mnogochlenov i $Q$ moduli nad koltsami mnogochlenov”, Sibirskie elektronnye matematicheskie izvestiya, 4 (2007), 64–84 | MR | Zbl
[3] E. Yu. Daniyarova, Algebraicheskaya geometriya nad svobodnoi metabelevoi algebroi Li III: $Q$ algebry i koordinatnye algebry algebraicheskikh mnozhestv, Preprint, Izd-vo OmGU, Omsk, 2005, 130 pp.
[4] E. Yu. Daniyarova, “Osnovy algebraicheskoi geometrii nad algebrami Li”, Vestnik Omskogo universiteta. Spetsvypusk. Kombinatornye metody algebry i slozhnost vychislenii, 2007, 8–39
[5] A. I. Maltsev, Algebraicheskie sistemy, Nauka, Moskva, 1970 | MR
[6] R. Khartskhorn, Algebraicheskaya geometriya, Mir, Moskva, 1981 | MR
[7] Dzh. Kharris, Algebraicheskaya geometriya. Nachalnyi kurs, MTsNMO, Moskva, 2005