Metabelian Lie $Q$-algebras
Sibirskie èlektronnye matematičeskie izvestiâ, Tome 6 (2009), pp. 26-48.

Voir la notice de l'article provenant de la source Math-Net.Ru

This is the second paper in the series of three, which are in the series of papers, the aim of which is to construct algebraic geometry over metabelian Lie algebras. For investigation of quasiidentity of coordinate algebras we introduce metabelian Lie $Q$-algebras. We have come to the characterization of such algebras by several ways. We prove the theorem of embedding an arbitrary $Q$-algebra into the direct sum of primary $Q$-algebras.
Keywords: matabelian Lie algebra over a field, $Q$-algebra, $U$-algebra, primary algebra, semiprimary algebra, primary decomposition, diophantine pojective vatiety over a field.
@article{SEMR_2009_6_a3,
     author = {E. Yu. Daniyarova},
     title = {Metabelian {Lie} $Q$-algebras},
     journal = {Sibirskie \`elektronnye matemati\v{c}eskie izvesti\^a},
     pages = {26--48},
     publisher = {mathdoc},
     volume = {6},
     year = {2009},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/SEMR_2009_6_a3/}
}
TY  - JOUR
AU  - E. Yu. Daniyarova
TI  - Metabelian Lie $Q$-algebras
JO  - Sibirskie èlektronnye matematičeskie izvestiâ
PY  - 2009
SP  - 26
EP  - 48
VL  - 6
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/SEMR_2009_6_a3/
LA  - ru
ID  - SEMR_2009_6_a3
ER  - 
%0 Journal Article
%A E. Yu. Daniyarova
%T Metabelian Lie $Q$-algebras
%J Sibirskie èlektronnye matematičeskie izvestiâ
%D 2009
%P 26-48
%V 6
%I mathdoc
%U http://geodesic.mathdoc.fr/item/SEMR_2009_6_a3/
%G ru
%F SEMR_2009_6_a3
E. Yu. Daniyarova. Metabelian Lie $Q$-algebras. Sibirskie èlektronnye matematičeskie izvestiâ, Tome 6 (2009), pp. 26-48. http://geodesic.mathdoc.fr/item/SEMR_2009_6_a3/

[1] E. Yu. Daniyarova, “Metabelevy $U$ algebry Li”, Sibirskie elektronnye matematicheskie izvestiya, 5 (2008), 355–382 | MR

[2] E. Yu. Daniyarova, “$Q$ idealy v koltsakh mnogochlenov i $Q$ moduli nad koltsami mnogochlenov”, Sibirskie elektronnye matematicheskie izvestiya, 4 (2007), 64–84 | MR | Zbl

[3] E. Yu. Daniyarova, Algebraicheskaya geometriya nad svobodnoi metabelevoi algebroi Li III: $Q$ algebry i koordinatnye algebry algebraicheskikh mnozhestv, Preprint, Izd-vo OmGU, Omsk, 2005, 130 pp.

[4] E. Yu. Daniyarova, “Osnovy algebraicheskoi geometrii nad algebrami Li”, Vestnik Omskogo universiteta. Spetsvypusk. Kombinatornye metody algebry i slozhnost vychislenii, 2007, 8–39

[5] A. I. Maltsev, Algebraicheskie sistemy, Nauka, Moskva, 1970 | MR

[6] R. Khartskhorn, Algebraicheskaya geometriya, Mir, Moskva, 1981 | MR

[7] Dzh. Kharris, Algebraicheskaya geometriya. Nachalnyi kurs, MTsNMO, Moskva, 2005