On new estimates for distances in analytic function spaces in higher dimension
Sibirskie èlektronnye matematičeskie izvestiâ, Tome 6 (2009), pp. 514-517 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

We provide various new sharp estimates for distances of fixed analytic functions to certain subspaces of analytic Besov classes in the unit ball and unit polydisk.
Keywords: holomorphic function, Bergman type classes, polydisk, unit ball.
Mots-clés : distances, Bloch-type spaces
@article{SEMR_2009_6_a28,
     author = {Romi F. Shamoyan and Olivera R. Mihi\'c},
     title = {On new estimates for distances in analytic function spaces in higher dimension},
     journal = {Sibirskie \`elektronnye matemati\v{c}eskie izvesti\^a},
     pages = {514--517},
     year = {2009},
     volume = {6},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SEMR_2009_6_a28/}
}
TY  - JOUR
AU  - Romi F. Shamoyan
AU  - Olivera R. Mihić
TI  - On new estimates for distances in analytic function spaces in higher dimension
JO  - Sibirskie èlektronnye matematičeskie izvestiâ
PY  - 2009
SP  - 514
EP  - 517
VL  - 6
UR  - http://geodesic.mathdoc.fr/item/SEMR_2009_6_a28/
LA  - en
ID  - SEMR_2009_6_a28
ER  - 
%0 Journal Article
%A Romi F. Shamoyan
%A Olivera R. Mihić
%T On new estimates for distances in analytic function spaces in higher dimension
%J Sibirskie èlektronnye matematičeskie izvestiâ
%D 2009
%P 514-517
%V 6
%U http://geodesic.mathdoc.fr/item/SEMR_2009_6_a28/
%G en
%F SEMR_2009_6_a28
Romi F. Shamoyan; Olivera R. Mihić. On new estimates for distances in analytic function spaces in higher dimension. Sibirskie èlektronnye matematičeskie izvestiâ, Tome 6 (2009), pp. 514-517. http://geodesic.mathdoc.fr/item/SEMR_2009_6_a28/

[1] M. Djrbashian, F. Shamoian, Topics in the theory of $A^p_\alpha$ classes, Teubner Texte zur Mathematics, 105, 1988 | MR | Zbl

[2] P. Ghatage, D. Zheng, “Analytic functions of bounded mean oscillation and the Bloch space”, Integr. Equat. Oper. Theory, 17 (1993), 501–515 | DOI | MR | Zbl

[3] J. Ortega, J. Fabrega, “Hardy's inequality and embeddings in holomorphic Triebel–Lizorkin spaces”, Illinois J. Math., 43 (1999), 733–751 | MR | Zbl

[4] W. Rudin, Function theory in polydisks, Benjamin, New York, 1969 | MR | Zbl

[5] R. Shamoyan, O. Mihić, “Analytic classes on subframe and expanded disk and the $\mathcal R^s$ differential operator in polydisk”, Journal of Inequ. and Appl., 2009, Art. ID 353801 | MR

[6] R. Shamoyan, S. Li, “On some properties of a differential operator on the polydisk”, Banach Journal of Math. Analysis, 3:1 (2009), 68–84 | MR

[7] W. Xu, “Distances from Bloch functions to some Möbius invariant function spaces in the unit ball of $\mathbb C^n$”, J. Funct. Spaces Appl., 7:1 (2009), 91–104 | MR

[8] R. Zhao, “Distances from Bloch functions to some Möbius invariant spaces”, Ann. Acad. Sci. Fenn. Math., 33 (2008), 303–313 | MR | Zbl

[9] K. Zhu, Spaces of Holomorphic Functions in the Unit Ball, Graduate Texts in Mathematics, 226, Springer-Verlag, New York, 2005 | MR