On new estimates for distances in analytic function spaces in higher dimension
Sibirskie èlektronnye matematičeskie izvestiâ, Tome 6 (2009), pp. 514-517.

Voir la notice de l'article provenant de la source Math-Net.Ru

We provide various new sharp estimates for distances of fixed analytic functions to certain subspaces of analytic Besov classes in the unit ball and unit polydisk.
Keywords: holomorphic function, Bergman type classes, polydisk, unit ball.
Mots-clés : distances, Bloch-type spaces
@article{SEMR_2009_6_a28,
     author = {Romi F. Shamoyan and Olivera R. Mihi\'c},
     title = {On new estimates for distances in analytic function spaces in higher dimension},
     journal = {Sibirskie \`elektronnye matemati\v{c}eskie izvesti\^a},
     pages = {514--517},
     publisher = {mathdoc},
     volume = {6},
     year = {2009},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SEMR_2009_6_a28/}
}
TY  - JOUR
AU  - Romi F. Shamoyan
AU  - Olivera R. Mihić
TI  - On new estimates for distances in analytic function spaces in higher dimension
JO  - Sibirskie èlektronnye matematičeskie izvestiâ
PY  - 2009
SP  - 514
EP  - 517
VL  - 6
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/SEMR_2009_6_a28/
LA  - en
ID  - SEMR_2009_6_a28
ER  - 
%0 Journal Article
%A Romi F. Shamoyan
%A Olivera R. Mihić
%T On new estimates for distances in analytic function spaces in higher dimension
%J Sibirskie èlektronnye matematičeskie izvestiâ
%D 2009
%P 514-517
%V 6
%I mathdoc
%U http://geodesic.mathdoc.fr/item/SEMR_2009_6_a28/
%G en
%F SEMR_2009_6_a28
Romi F. Shamoyan; Olivera R. Mihić. On new estimates for distances in analytic function spaces in higher dimension. Sibirskie èlektronnye matematičeskie izvestiâ, Tome 6 (2009), pp. 514-517. http://geodesic.mathdoc.fr/item/SEMR_2009_6_a28/

[1] M. Djrbashian, F. Shamoian, Topics in the theory of $A^p_\alpha$ classes, Teubner Texte zur Mathematics, 105, 1988 | MR | Zbl

[2] P. Ghatage, D. Zheng, “Analytic functions of bounded mean oscillation and the Bloch space”, Integr. Equat. Oper. Theory, 17 (1993), 501–515 | DOI | MR | Zbl

[3] J. Ortega, J. Fabrega, “Hardy's inequality and embeddings in holomorphic Triebel–Lizorkin spaces”, Illinois J. Math., 43 (1999), 733–751 | MR | Zbl

[4] W. Rudin, Function theory in polydisks, Benjamin, New York, 1969 | MR | Zbl

[5] R. Shamoyan, O. Mihić, “Analytic classes on subframe and expanded disk and the $\mathcal R^s$ differential operator in polydisk”, Journal of Inequ. and Appl., 2009, Art. ID 353801 | MR

[6] R. Shamoyan, S. Li, “On some properties of a differential operator on the polydisk”, Banach Journal of Math. Analysis, 3:1 (2009), 68–84 | MR

[7] W. Xu, “Distances from Bloch functions to some Möbius invariant function spaces in the unit ball of $\mathbb C^n$”, J. Funct. Spaces Appl., 7:1 (2009), 91–104 | MR

[8] R. Zhao, “Distances from Bloch functions to some Möbius invariant spaces”, Ann. Acad. Sci. Fenn. Math., 33 (2008), 303–313 | MR | Zbl

[9] K. Zhu, Spaces of Holomorphic Functions in the Unit Ball, Graduate Texts in Mathematics, 226, Springer-Verlag, New York, 2005 | MR