Mots-clés : distances, Bloch-type spaces
@article{SEMR_2009_6_a28,
author = {Romi F. Shamoyan and Olivera R. Mihi\'c},
title = {On new estimates for distances in analytic function spaces in higher dimension},
journal = {Sibirskie \`elektronnye matemati\v{c}eskie izvesti\^a},
pages = {514--517},
year = {2009},
volume = {6},
language = {en},
url = {http://geodesic.mathdoc.fr/item/SEMR_2009_6_a28/}
}
TY - JOUR AU - Romi F. Shamoyan AU - Olivera R. Mihić TI - On new estimates for distances in analytic function spaces in higher dimension JO - Sibirskie èlektronnye matematičeskie izvestiâ PY - 2009 SP - 514 EP - 517 VL - 6 UR - http://geodesic.mathdoc.fr/item/SEMR_2009_6_a28/ LA - en ID - SEMR_2009_6_a28 ER -
Romi F. Shamoyan; Olivera R. Mihić. On new estimates for distances in analytic function spaces in higher dimension. Sibirskie èlektronnye matematičeskie izvestiâ, Tome 6 (2009), pp. 514-517. http://geodesic.mathdoc.fr/item/SEMR_2009_6_a28/
[1] M. Djrbashian, F. Shamoian, Topics in the theory of $A^p_\alpha$ classes, Teubner Texte zur Mathematics, 105, 1988 | MR | Zbl
[2] P. Ghatage, D. Zheng, “Analytic functions of bounded mean oscillation and the Bloch space”, Integr. Equat. Oper. Theory, 17 (1993), 501–515 | DOI | MR | Zbl
[3] J. Ortega, J. Fabrega, “Hardy's inequality and embeddings in holomorphic Triebel–Lizorkin spaces”, Illinois J. Math., 43 (1999), 733–751 | MR | Zbl
[4] W. Rudin, Function theory in polydisks, Benjamin, New York, 1969 | MR | Zbl
[5] R. Shamoyan, O. Mihić, “Analytic classes on subframe and expanded disk and the $\mathcal R^s$ differential operator in polydisk”, Journal of Inequ. and Appl., 2009, Art. ID 353801 | MR
[6] R. Shamoyan, S. Li, “On some properties of a differential operator on the polydisk”, Banach Journal of Math. Analysis, 3:1 (2009), 68–84 | MR
[7] W. Xu, “Distances from Bloch functions to some Möbius invariant function spaces in the unit ball of $\mathbb C^n$”, J. Funct. Spaces Appl., 7:1 (2009), 91–104 | MR
[8] R. Zhao, “Distances from Bloch functions to some Möbius invariant spaces”, Ann. Acad. Sci. Fenn. Math., 33 (2008), 303–313 | MR | Zbl
[9] K. Zhu, Spaces of Holomorphic Functions in the Unit Ball, Graduate Texts in Mathematics, 226, Springer-Verlag, New York, 2005 | MR