Dynamic quadrangles and isochronous oscillations
Sibirskie èlektronnye matematičeskie izvestiâ, Tome 6 (2009), pp. 381-384.

Voir la notice de l'article provenant de la source Math-Net.Ru

Integral formulas are exposed which express a relation between the movement times of transversal plain flows along the opposite sides of the “dynamic quadrangles” generated by the flows. In the formulas, the main role is played by the Poisson bracket. An application is presented to the theory of isochronous oscillations.
Keywords: dynamic quadrangles
Mots-clés : Poisson brackets, isochronous oscillations.
@article{SEMR_2009_6_a26,
     author = {V. V. Ivanov},
     title = {Dynamic quadrangles and isochronous oscillations},
     journal = {Sibirskie \`elektronnye matemati\v{c}eskie izvesti\^a},
     pages = {381--384},
     publisher = {mathdoc},
     volume = {6},
     year = {2009},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/SEMR_2009_6_a26/}
}
TY  - JOUR
AU  - V. V. Ivanov
TI  - Dynamic quadrangles and isochronous oscillations
JO  - Sibirskie èlektronnye matematičeskie izvestiâ
PY  - 2009
SP  - 381
EP  - 384
VL  - 6
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/SEMR_2009_6_a26/
LA  - ru
ID  - SEMR_2009_6_a26
ER  - 
%0 Journal Article
%A V. V. Ivanov
%T Dynamic quadrangles and isochronous oscillations
%J Sibirskie èlektronnye matematičeskie izvestiâ
%D 2009
%P 381-384
%V 6
%I mathdoc
%U http://geodesic.mathdoc.fr/item/SEMR_2009_6_a26/
%G ru
%F SEMR_2009_6_a26
V. V. Ivanov. Dynamic quadrangles and isochronous oscillations. Sibirskie èlektronnye matematičeskie izvestiâ, Tome 6 (2009), pp. 381-384. http://geodesic.mathdoc.fr/item/SEMR_2009_6_a26/

[1] V. I. Arnold, Matematicheskie metody klassicheskoi mekhaniki, Nauka, M., 1989 | MR

[2] J. Chavarriga, M. Sabatiny, “A survey of isochronous centers”, Qualitative Theory of Dynamical Systems, 1:1 (1999), 1–70 | DOI | MR

[3] Villarini M., “Regularity properties of the period function near a centre of planar vector fields”, Nonlinear Analisys. T.M.A, 19 (1992), 787–803 | DOI | MR | Zbl

[4] A. Algaba, E. Freire, E. Gamero, “Isochronicity via normal form”, Qual. Theory Dyn. Syst., 1:2 (2000), 133–156 | DOI | MR | Zbl

[5] V. V. Ivanov, “Dinamicheskie chetyrekhugolniki transversalnykh vektornykh polei i skobki Puassona”, Mezhdunarodnaya konferentsiya, posvyaschennaya 100-letiyu so dnya rozhdeniya S. L. Soboleva. Tezisy dokladov (Novosibirsk, Rossiya, 5–12 oktyabrya, 2008), 140