On the compactness principle in variable space $L^p$ for periodic composite structures
Sibirskie èlektronnye matematičeskie izvestiâ, Tome 6 (2009), pp. 526-532
Cet article a éte moissonné depuis la source Math-Net.Ru
We consider the compactness principle in the variable space $L^p$ related to a periodic Borel measure. It is supposed that the periodic Borel measure describes a periodic singular or composite structure. We prove the compactness principle for periodic grids, box structures, involving Cantor's constructions, and corresponding composite structures.
Keywords:
periodic structures, periodic Borel measure, compactness principle.
@article{SEMR_2009_6_a24,
author = {V. V. Shumilova},
title = {On the compactness principle in variable space $L^p$ for periodic composite structures},
journal = {Sibirskie \`elektronnye matemati\v{c}eskie izvesti\^a},
pages = {526--532},
year = {2009},
volume = {6},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/SEMR_2009_6_a24/}
}
V. V. Shumilova. On the compactness principle in variable space $L^p$ for periodic composite structures. Sibirskie èlektronnye matematičeskie izvestiâ, Tome 6 (2009), pp. 526-532. http://geodesic.mathdoc.fr/item/SEMR_2009_6_a24/
[1] V. V. Zhikov, “Usrednenie zadach teorii uprugosti na singulyarnykh strukturakh”, Izvestiya RAN. Seriya matematicheskaya, 66:2 (2002), 81–148 | MR | Zbl
[2] V. V. Shumilova, “O printsipe kompaktnosti dlya periodicheskikh singulyarnykh i tonkikh struktur”, Matematicheskie zametki, 79:6 (2006), 941–949 | MR | Zbl
[3] V. V. Zhikov, “Svyaznost i usrednenie. Primery fraktalnoi provodimosti”, Matematicheskii sbornik, 187:8 (1996), 3–40 | MR | Zbl
[4] V. V. Zhikov, “Ob odnom rasshirenii i primenenii metoda dvukhmasshtabnoi skhodimosti”, Matematicheskii sbornik, 191:7 (2000), 31–72 | MR | Zbl