Voir la notice de l'article provenant de la source Math-Net.Ru
@article{SEMR_2009_6_a21, author = {A. V. Vasil'ev}, title = {On {Thompson's} {Conjecture}}, journal = {Sibirskie \`elektronnye matemati\v{c}eskie izvesti\^a}, pages = {457--464}, publisher = {mathdoc}, volume = {6}, year = {2009}, language = {en}, url = {http://geodesic.mathdoc.fr/item/SEMR_2009_6_a21/} }
A. V. Vasil'ev. On Thompson's Conjecture. Sibirskie èlektronnye matematičeskie izvestiâ, Tome 6 (2009), pp. 457-464. http://geodesic.mathdoc.fr/item/SEMR_2009_6_a21/
[1] E. I. Khukhro and V. D. Mazurov (eds.), Unsolved Problems in Group Theory: the Kourovka Notebook, 16th edition, Sobolev Institute of Mathematics, Novosibirsk, 2006 | MR
[2] J. S. Williams, “Prime graph components of finite groups”, J. Algebra, 69:2 (1981), 487–513 | DOI | MR | Zbl
[3] A. S. Kondratiev, “On prime graph components for finite simple groups”, Mat. Sb., 180:6 (1989), 787–797 | MR
[4] G. Y. Chen, “On Thompson's conjecture”, J. Algebra, 185 (1996), 185–193 | Zbl
[5] E. I. Khukhro, Nilpotent groups and their automorphisms, De Gruyter, Berlin, 1993 | MR | Zbl
[6] J. H. Conway, R. T. Curtis, S. P. Norton, R. A. Parker, R. A. Wilson, Atlas of finite groups, Clarendon Press, Oxford, 1985 | MR | Zbl
[7] A. V. Zavarnitsine, “Finite simple groups with narrow prime spectrum”, Siberian Electronic Mathematical Reports, 6 (2009), 1–12 | MR
[8] M. Aschbaher, G. M. Seitz, “Involutions in Chevalley groups over fields of even order”, Nagoya Math. J., 63 (1976), 1–91 | MR