On Thompson's Conjecture
Sibirskie èlektronnye matematičeskie izvestiâ, Tome 6 (2009), pp. 457-464.

Voir la notice de l'article provenant de la source Math-Net.Ru

For a finite group $G$ denote by $N(G)$ the set of conjugacy class sizes of $G$. In 1980s J. G. Thompson posed the following conjecture: if $L$ is a finite nonabelian simple group, $G$ is a finite group with trivial center and $N(G)=N(L)$, then $L$ and $G$ are isomorphic. Here we prove Thompson's conjecture when $L$ is one of the groups $A_{10}$ and $L_4(4)$. This is the first time when Thompson's conjecture is checked for groups with connected prime graph.
Keywords: finite group, conjugacy class size, prime graph of a group.
Mots-clés : simple group
@article{SEMR_2009_6_a21,
     author = {A. V. Vasil'ev},
     title = {On {Thompson's} {Conjecture}},
     journal = {Sibirskie \`elektronnye matemati\v{c}eskie izvesti\^a},
     pages = {457--464},
     publisher = {mathdoc},
     volume = {6},
     year = {2009},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SEMR_2009_6_a21/}
}
TY  - JOUR
AU  - A. V. Vasil'ev
TI  - On Thompson's Conjecture
JO  - Sibirskie èlektronnye matematičeskie izvestiâ
PY  - 2009
SP  - 457
EP  - 464
VL  - 6
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/SEMR_2009_6_a21/
LA  - en
ID  - SEMR_2009_6_a21
ER  - 
%0 Journal Article
%A A. V. Vasil'ev
%T On Thompson's Conjecture
%J Sibirskie èlektronnye matematičeskie izvestiâ
%D 2009
%P 457-464
%V 6
%I mathdoc
%U http://geodesic.mathdoc.fr/item/SEMR_2009_6_a21/
%G en
%F SEMR_2009_6_a21
A. V. Vasil'ev. On Thompson's Conjecture. Sibirskie èlektronnye matematičeskie izvestiâ, Tome 6 (2009), pp. 457-464. http://geodesic.mathdoc.fr/item/SEMR_2009_6_a21/

[1] E. I. Khukhro and V. D. Mazurov (eds.), Unsolved Problems in Group Theory: the Kourovka Notebook, 16th edition, Sobolev Institute of Mathematics, Novosibirsk, 2006 | MR

[2] J. S. Williams, “Prime graph components of finite groups”, J. Algebra, 69:2 (1981), 487–513 | DOI | MR | Zbl

[3] A. S. Kondratiev, “On prime graph components for finite simple groups”, Mat. Sb., 180:6 (1989), 787–797 | MR

[4] G. Y. Chen, “On Thompson's conjecture”, J. Algebra, 185 (1996), 185–193 | Zbl

[5] E. I. Khukhro, Nilpotent groups and their automorphisms, De Gruyter, Berlin, 1993 | MR | Zbl

[6] J. H. Conway, R. T. Curtis, S. P. Norton, R. A. Parker, R. A. Wilson, Atlas of finite groups, Clarendon Press, Oxford, 1985 | MR | Zbl

[7] A. V. Zavarnitsine, “Finite simple groups with narrow prime spectrum”, Siberian Electronic Mathematical Reports, 6 (2009), 1–12 | MR

[8] M. Aschbaher, G. M. Seitz, “Involutions in Chevalley groups over fields of even order”, Nagoya Math. J., 63 (1976), 1–91 | MR