On Thompson's Conjecture
Sibirskie èlektronnye matematičeskie izvestiâ, Tome 6 (2009), pp. 457-464

Voir la notice de l'article provenant de la source Math-Net.Ru

For a finite group $G$ denote by $N(G)$ the set of conjugacy class sizes of $G$. In 1980s J. G. Thompson posed the following conjecture: if $L$ is a finite nonabelian simple group, $G$ is a finite group with trivial center and $N(G)=N(L)$, then $L$ and $G$ are isomorphic. Here we prove Thompson's conjecture when $L$ is one of the groups $A_{10}$ and $L_4(4)$. This is the first time when Thompson's conjecture is checked for groups with connected prime graph.
Keywords: finite group, conjugacy class size, prime graph of a group.
Mots-clés : simple group
@article{SEMR_2009_6_a21,
     author = {A. V. Vasil'ev},
     title = {On {Thompson's} {Conjecture}},
     journal = {Sibirskie \`elektronnye matemati\v{c}eskie izvesti\^a},
     pages = {457--464},
     publisher = {mathdoc},
     volume = {6},
     year = {2009},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SEMR_2009_6_a21/}
}
TY  - JOUR
AU  - A. V. Vasil'ev
TI  - On Thompson's Conjecture
JO  - Sibirskie èlektronnye matematičeskie izvestiâ
PY  - 2009
SP  - 457
EP  - 464
VL  - 6
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/SEMR_2009_6_a21/
LA  - en
ID  - SEMR_2009_6_a21
ER  - 
%0 Journal Article
%A A. V. Vasil'ev
%T On Thompson's Conjecture
%J Sibirskie èlektronnye matematičeskie izvestiâ
%D 2009
%P 457-464
%V 6
%I mathdoc
%U http://geodesic.mathdoc.fr/item/SEMR_2009_6_a21/
%G en
%F SEMR_2009_6_a21
A. V. Vasil'ev. On Thompson's Conjecture. Sibirskie èlektronnye matematičeskie izvestiâ, Tome 6 (2009), pp. 457-464. http://geodesic.mathdoc.fr/item/SEMR_2009_6_a21/