Divergence of the Fourier series of the Weierstrass--Mandelbrot cosine function
Sibirskie èlektronnye matematičeskie izvestiâ, Tome 6 (2009), pp. 17-25

Voir la notice de l'article provenant de la source Math-Net.Ru

The set of $M_c$ – the points of divergence of the formal trigonometric Fourier series of the Weierstrass–Mandelbrot cosine function $C(t)$, given on the segment $[-1,1]$ is considered. In particular, it is shown that on the segment $[0,1]$ the Fourier series of the function $C(t)$ diverges in all the points of the subset $M_c(1/2)$, having zero measurement and the cardinality (power) of continuum when the function parameters are: $b=3$ and $D=1,5$.
Keywords: Fourier series, Weierstrass–Mandelbrot cosine function.
@article{SEMR_2009_6_a2,
     author = {K. K. Kazbekov},
     title = {Divergence of the {Fourier} series of the {Weierstrass--Mandelbrot} cosine function},
     journal = {Sibirskie \`elektronnye matemati\v{c}eskie izvesti\^a},
     pages = {17--25},
     publisher = {mathdoc},
     volume = {6},
     year = {2009},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/SEMR_2009_6_a2/}
}
TY  - JOUR
AU  - K. K. Kazbekov
TI  - Divergence of the Fourier series of the Weierstrass--Mandelbrot cosine function
JO  - Sibirskie èlektronnye matematičeskie izvestiâ
PY  - 2009
SP  - 17
EP  - 25
VL  - 6
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/SEMR_2009_6_a2/
LA  - ru
ID  - SEMR_2009_6_a2
ER  - 
%0 Journal Article
%A K. K. Kazbekov
%T Divergence of the Fourier series of the Weierstrass--Mandelbrot cosine function
%J Sibirskie èlektronnye matematičeskie izvestiâ
%D 2009
%P 17-25
%V 6
%I mathdoc
%U http://geodesic.mathdoc.fr/item/SEMR_2009_6_a2/
%G ru
%F SEMR_2009_6_a2
K. K. Kazbekov. Divergence of the Fourier series of the Weierstrass--Mandelbrot cosine function. Sibirskie èlektronnye matematičeskie izvestiâ, Tome 6 (2009), pp. 17-25. http://geodesic.mathdoc.fr/item/SEMR_2009_6_a2/