Temporal logic of linear time frames with inductions axiom
Sibirskie èlektronnye matematičeskie izvestiâ, Tome 6 (2009), pp. 312-325.

Voir la notice de l'article provenant de la source Math-Net.Ru

A class of frames based on a class of frames with discrete linear time with current time point clusters is considered. The temporal calculus $\mathbf{LInd}$ is found which is complete with respect to this class. It is proved that $\mathbf{LInd}$ has the finite model property and therefore it is decidable.
Keywords: temporal logic, Kripke frames, axiomatization, finite model property.
@article{SEMR_2009_6_a15,
     author = {V. F. Yun},
     title = {Temporal logic of linear time frames with inductions axiom},
     journal = {Sibirskie \`elektronnye matemati\v{c}eskie izvesti\^a},
     pages = {312--325},
     publisher = {mathdoc},
     volume = {6},
     year = {2009},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/SEMR_2009_6_a15/}
}
TY  - JOUR
AU  - V. F. Yun
TI  - Temporal logic of linear time frames with inductions axiom
JO  - Sibirskie èlektronnye matematičeskie izvestiâ
PY  - 2009
SP  - 312
EP  - 325
VL  - 6
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/SEMR_2009_6_a15/
LA  - ru
ID  - SEMR_2009_6_a15
ER  - 
%0 Journal Article
%A V. F. Yun
%T Temporal logic of linear time frames with inductions axiom
%J Sibirskie èlektronnye matematičeskie izvestiâ
%D 2009
%P 312-325
%V 6
%I mathdoc
%U http://geodesic.mathdoc.fr/item/SEMR_2009_6_a15/
%G ru
%F SEMR_2009_6_a15
V. F. Yun. Temporal logic of linear time frames with inductions axiom. Sibirskie èlektronnye matematičeskie izvestiâ, Tome 6 (2009), pp. 312-325. http://geodesic.mathdoc.fr/item/SEMR_2009_6_a15/

[1] A. V. Kudinov, Topologicheskie modalnye logiki s modalnostyu neravenstva, Dis. k-ta fiz.-mat. nauk, M., 2008

[2] V. B. Shekhtman, Modalnye logiki topologicheskikh prostranstv, Dis. d-ra fiz.-mat. nauk, M., 1999 | Zbl

[3] A. Chagrov, M. Zakharyaschev, Modal logics, Oxford Logic Guides, 35, Clarendon Press, Oxford, 1977

[4] D. Gabbay, I. Hodkinson, M. Reynolds, Temporal logic, Oxford University Press, 1994 | MR

[5] F. Kröger, Temporal logic of programs, Springer, 1987 | MR | Zbl

[6] V. Rybakov, “Discrete linear temporal logic with current time point clasters, deciding algorithms”, Logic and Logic Philosophy, 17:1–2 (2008) | MR | Zbl

[7] K. Segerberg, “The Logic of Deliberate Action”, Journal of Philosophical Logic, 11:2 (1982) | DOI | MR | Zbl

[8] D. Vakarelov, Modal logics for Knowledge Representation Systems, Preprint No 7, Sofia Univ., 1988 | MR | Zbl

[9] D. Vakarelov, “Inductive Modal Logics”, Fundamenta Informaticae, 16 (1992), 383–405 | MR | Zbl