Spaces of $CD_0$-functions and $CD_0$-sections of Banach bundles
Sibirskie èlektronnye matematičeskie izvestiâ, Tome 6 (2009), pp. 219-242

Voir la notice de l'article provenant de la source Math-Net.Ru

We first briefly expose some crucial phases in studying the space $CD_0(Q)=C(Q)+c_0(Q)$ whose elements are the sums of continuous and “discrete” functions defined on a compact Hausdorff space $Q$ without isolated points. In this part, special emphasis is on describing the compact space $\widetilde Q$ representing the Banach lattice $CD_0(Q)$ as $C(\widetilde Q)$. The rest of the article is dedicated to the analogous frame related to the space $CD_0(Q,\chi)$ of “continuous-discrete” sections of a Banach bundle $\chi$ and the space of $CD_0$-homomorphisms of Banach bundles.
Keywords: Banach lattice, $AM$-space, Alexandroff duplicate, continuous Banach bundle, section of a Banach bundle, homomorphism of Banach bundles
Mots-clés : Banach $C(Q)$-module, homomorphism of $C(Q)$-modules.
@article{SEMR_2009_6_a12,
     author = {A. E. Gutman and A. V. Koptev},
     title = {Spaces of $CD_0$-functions and $CD_0$-sections of {Banach} bundles},
     journal = {Sibirskie \`elektronnye matemati\v{c}eskie izvesti\^a},
     pages = {219--242},
     publisher = {mathdoc},
     volume = {6},
     year = {2009},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SEMR_2009_6_a12/}
}
TY  - JOUR
AU  - A. E. Gutman
AU  - A. V. Koptev
TI  - Spaces of $CD_0$-functions and $CD_0$-sections of Banach bundles
JO  - Sibirskie èlektronnye matematičeskie izvestiâ
PY  - 2009
SP  - 219
EP  - 242
VL  - 6
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/SEMR_2009_6_a12/
LA  - en
ID  - SEMR_2009_6_a12
ER  - 
%0 Journal Article
%A A. E. Gutman
%A A. V. Koptev
%T Spaces of $CD_0$-functions and $CD_0$-sections of Banach bundles
%J Sibirskie èlektronnye matematičeskie izvestiâ
%D 2009
%P 219-242
%V 6
%I mathdoc
%U http://geodesic.mathdoc.fr/item/SEMR_2009_6_a12/
%G en
%F SEMR_2009_6_a12
A. E. Gutman; A. V. Koptev. Spaces of $CD_0$-functions and $CD_0$-sections of Banach bundles. Sibirskie èlektronnye matematičeskie izvestiâ, Tome 6 (2009), pp. 219-242. http://geodesic.mathdoc.fr/item/SEMR_2009_6_a12/