Spaces of $CD_0$-functions and $CD_0$-sections of Banach bundles
Sibirskie èlektronnye matematičeskie izvestiâ, Tome 6 (2009), pp. 219-242.

Voir la notice de l'article provenant de la source Math-Net.Ru

We first briefly expose some crucial phases in studying the space $CD_0(Q)=C(Q)+c_0(Q)$ whose elements are the sums of continuous and “discrete” functions defined on a compact Hausdorff space $Q$ without isolated points. In this part, special emphasis is on describing the compact space $\widetilde Q$ representing the Banach lattice $CD_0(Q)$ as $C(\widetilde Q)$. The rest of the article is dedicated to the analogous frame related to the space $CD_0(Q,\chi)$ of “continuous-discrete” sections of a Banach bundle $\chi$ and the space of $CD_0$-homomorphisms of Banach bundles.
Keywords: Banach lattice, $AM$-space, Alexandroff duplicate, continuous Banach bundle, section of a Banach bundle, homomorphism of Banach bundles
Mots-clés : Banach $C(Q)$-module, homomorphism of $C(Q)$-modules.
@article{SEMR_2009_6_a12,
     author = {A. E. Gutman and A. V. Koptev},
     title = {Spaces of $CD_0$-functions and $CD_0$-sections of {Banach} bundles},
     journal = {Sibirskie \`elektronnye matemati\v{c}eskie izvesti\^a},
     pages = {219--242},
     publisher = {mathdoc},
     volume = {6},
     year = {2009},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SEMR_2009_6_a12/}
}
TY  - JOUR
AU  - A. E. Gutman
AU  - A. V. Koptev
TI  - Spaces of $CD_0$-functions and $CD_0$-sections of Banach bundles
JO  - Sibirskie èlektronnye matematičeskie izvestiâ
PY  - 2009
SP  - 219
EP  - 242
VL  - 6
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/SEMR_2009_6_a12/
LA  - en
ID  - SEMR_2009_6_a12
ER  - 
%0 Journal Article
%A A. E. Gutman
%A A. V. Koptev
%T Spaces of $CD_0$-functions and $CD_0$-sections of Banach bundles
%J Sibirskie èlektronnye matematičeskie izvestiâ
%D 2009
%P 219-242
%V 6
%I mathdoc
%U http://geodesic.mathdoc.fr/item/SEMR_2009_6_a12/
%G en
%F SEMR_2009_6_a12
A. E. Gutman; A. V. Koptev. Spaces of $CD_0$-functions and $CD_0$-sections of Banach bundles. Sibirskie èlektronnye matematičeskie izvestiâ, Tome 6 (2009), pp. 219-242. http://geodesic.mathdoc.fr/item/SEMR_2009_6_a12/

[1] Abramovich Y. A., Wickstead A. W., “Regular operators from and into a small Riesz space”, Indag. Math. N.S., 2:3 (1991), 257–274 | MR | Zbl

[2] Abramovich Y. A., Wickstead A. W., “Remarkable classes of unital AM-spaces”, J. Math. Anal. Appl., 180:2 (1993), 398–411 | DOI | MR | Zbl

[3] Abramovich Y. A., Wickstead A. W., “The regularity of order bounded operators into $C(K)$. II”, Quart. J. Math. Oxford Ser. 2, 44:175 (1993), 257–270 | DOI | MR | Zbl

[4] Akilov G. P., Kutateladze S. S., Ordered Vector Spaces, Nauka, Novosibirsk, 1978 (In Russian) | MR | Zbl

[5] Alpay \c S., Ercan Z., “$CD_0(K,E)$ and $CD_\omega(K,E)$-spaces as Banach lattices”, Positivity, 4:3 (2000), 213–225 | DOI | MR | Zbl

[6] Alpay \c S., Ercan Z., “A remark on $CD_0(K)$-spaces”, Siberian Math. J., 47:3 (2006), 422–424 | DOI | MR | Zbl

[7] Engelking R., General Topology, Heldermann, Berlin, 1989 | MR | Zbl

[8] Ercan Z., “A concrete description of $CD_0(K)$-spaces as $C(X)$-spaces and its applications”, Proc. Amer. Math. Soc., 132 (2004), 1761–1763 | DOI | MR | Zbl

[9] Gierz G., Bundles of Topological Vector Spaces and Their Duality, Lecture Notes in Math., 955, Springer, Berlin, 1982 | MR | Zbl

[10] Gutman A. E., “Banach bundles in the theory of lattice-normed spaces”, Order-compatible linear operators, Trudy Inst. Mat., 29, Institute of Mathematics, Novosibirsk, 1995, 63–211 (In Russian) | MR | Zbl

[11] Gutman A. E., Koptev A. V., “Spaces of $CD_0$-sections and $CD_0$-homomorphisms of Banach bundles”, Vestnik, Quart. J. of Novosibirsk State Univ., Series: Math., mech. and informatics, 7:4 (2007), 27–48 (In Russian)

[12] Gutman A. E., Koptev A. V., “Spaces of $CD_0$-functions and Alexandroff duplicate”, Vladikavkaz. Mat. Zh., 9:3 (2007), 11–21 (In Russian) | MR

[13] Hõim T., Robbins D. A., “Section spaces of Banach bundles which generalize some function spaces”, Siberian Adv. Math., 16:3 (2006), 71–81 | MR

[14] Koptev A. V., “Some classes of Banach bundles with continuous weakly continuous sections”, Siberian Math. J., 45:3 (2004), 495–503 | DOI | MR | Zbl

[15] Kusraev A. G., Dominated Operators, Nauka, Moscow, 2003 (In Russian) | MR

[16] Troitsky V. G., “On $CD_0(K)$-spaces”, Vladikavkaz. Mat. Zh., 6:1 (2004), 71–73 | MR | Zbl