Exceptional action of the simple groups $L_4(q)$ in the defining characteristic
Sibirskie èlektronnye matematičeskie izvestiâ, Tome 5 (2008), pp. 68-74

Voir la notice de l'article provenant de la source Math-Net.Ru

We find a counterexample to Problem 14.60 from the Kourovka notebook by giving an example of a group $\rm {PSL}_4(q)$ which is not recognizable among its covers from spectrum. Namely, we show that such a group has a module in the defining characteristic with the property that the element order set of the corresponding semidirect product equals that of the group itself.
@article{SEMR_2008_5_a7,
     author = {A. V. Zavarnitsine},
     title = {Exceptional action of the simple groups $L_4(q)$ in the defining characteristic},
     journal = {Sibirskie \`elektronnye matemati\v{c}eskie izvesti\^a},
     pages = {68--74},
     publisher = {mathdoc},
     volume = {5},
     year = {2008},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SEMR_2008_5_a7/}
}
TY  - JOUR
AU  - A. V. Zavarnitsine
TI  - Exceptional action of the simple groups $L_4(q)$ in the defining characteristic
JO  - Sibirskie èlektronnye matematičeskie izvestiâ
PY  - 2008
SP  - 68
EP  - 74
VL  - 5
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/SEMR_2008_5_a7/
LA  - en
ID  - SEMR_2008_5_a7
ER  - 
%0 Journal Article
%A A. V. Zavarnitsine
%T Exceptional action of the simple groups $L_4(q)$ in the defining characteristic
%J Sibirskie èlektronnye matematičeskie izvestiâ
%D 2008
%P 68-74
%V 5
%I mathdoc
%U http://geodesic.mathdoc.fr/item/SEMR_2008_5_a7/
%G en
%F SEMR_2008_5_a7
A. V. Zavarnitsine. Exceptional action of the simple groups $L_4(q)$ in the defining characteristic. Sibirskie èlektronnye matematičeskie izvestiâ, Tome 5 (2008), pp. 68-74. http://geodesic.mathdoc.fr/item/SEMR_2008_5_a7/