Voir la notice de l'article provenant de la source Math-Net.Ru
@article{SEMR_2008_5_a55, author = {G. V. Dyatlov}, title = {On two problems}, journal = {Sibirskie \`elektronnye matemati\v{c}eskie izvesti\^a}, pages = {647--651}, publisher = {mathdoc}, volume = {5}, year = {2008}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/SEMR_2008_5_a55/} }
G. V. Dyatlov. On two problems. Sibirskie èlektronnye matematičeskie izvestiâ, Tome 5 (2008), pp. 647-651. http://geodesic.mathdoc.fr/item/SEMR_2008_5_a55/
[1] L. Hörmander, Linear Partial Differential Operators, Springer Verlag, Berlin, 1963 | MR
[2] D. Tataru, “Unique continuation for solutions to PDE's; between Hörmander's theorem and Holmgren's theorem”, Comm. PDE, 20 (1995), 855–884 | DOI | MR | Zbl
[3] D. Tataru, “Unique continuation for operators with partially analytic coefficients”, J. Math. Pures Appl., 78 (1999), 505–521 | DOI | MR | Zbl
[4] M. I. Belishev, “Boundary control in reconstruction of manifolds and metrics (the BC method)”, Inverse Problems, 13 (1997), R1–R45 | DOI | MR | Zbl
[5] A. L. Bukhgeim, G. V. Dyatlov, and G. Uhlmann, “Unique continuation for hyperbolic equations with memory”, J. Inv. Ill-Posed Problems, 15 (2007), 587–598 | DOI | MR | Zbl
[6] D. L. Russell, “Boundary value control theory of the higher-dimensional wave equation”, SIAM J. Control, 9 (1971), 29–42 | DOI | MR | Zbl
[7] D. L. Russell, “Controllability and stabilizability theory for linear partial differential equations”, SIAM Rev., 20 (1978), 639–739 | DOI | MR | Zbl
[8] V. P. Maltsev and K. A. Semyanov, Characterization of Bio-Particles from Light Scattering, Inverse and Ill-Posed Problems Series, VSP, Utrecht, 2004 | MR | Zbl
[9] G. V. Dyatlov, K. V. Gilev, K. A. Semyanov, and V. P. Maltsev, “The Scanning Flow Cytometer Modified for Measurement of Two-Dimensional Light-Scattering Pattern of Individual Particles”, Meas. Sci. Technol., 19 (2008), 015408 | DOI
[10] A. N. Tikhonov and V. A. Arsenin, Solutions of Ill-posed Problems, Winston Sons, Washington, 1977 | Zbl