The correct flow chart for numerical solving of an inverse problem by the optimization method
Sibirskie èlektronnye matematičeskie izvestiâ, Tome 5 (2008), pp. 609-619.

Voir la notice de l'article provenant de la source Math-Net.Ru

The two flow charts for solving of the same inverse problem by the optimization method are presented. On the numerical examples it is shown that the first flow chat offen used researchers requires much more time for calculations than the second one. It is caused by necessity of use of fineer net and by increase in quantity of minimization iterations of the residual functional for its decrease up to the certain value.
Keywords: inverse problem, optimization method, residual funcctional, conjugate problem.
@article{SEMR_2008_5_a52,
     author = {A. L. Karchevsky},
     title = {The correct flow chart for numerical solving of an inverse problem by the optimization method},
     journal = {Sibirskie \`elektronnye matemati\v{c}eskie izvesti\^a},
     pages = {609--619},
     publisher = {mathdoc},
     volume = {5},
     year = {2008},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/SEMR_2008_5_a52/}
}
TY  - JOUR
AU  - A. L. Karchevsky
TI  - The correct flow chart for numerical solving of an inverse problem by the optimization method
JO  - Sibirskie èlektronnye matematičeskie izvestiâ
PY  - 2008
SP  - 609
EP  - 619
VL  - 5
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/SEMR_2008_5_a52/
LA  - ru
ID  - SEMR_2008_5_a52
ER  - 
%0 Journal Article
%A A. L. Karchevsky
%T The correct flow chart for numerical solving of an inverse problem by the optimization method
%J Sibirskie èlektronnye matematičeskie izvestiâ
%D 2008
%P 609-619
%V 5
%I mathdoc
%U http://geodesic.mathdoc.fr/item/SEMR_2008_5_a52/
%G ru
%F SEMR_2008_5_a52
A. L. Karchevsky. The correct flow chart for numerical solving of an inverse problem by the optimization method. Sibirskie èlektronnye matematičeskie izvestiâ, Tome 5 (2008), pp. 609-619. http://geodesic.mathdoc.fr/item/SEMR_2008_5_a52/

[1] F. P. Vasilev, Metody resheniya ekstremalnykh zadach, Nauka, Moskva, 1981 | MR

[2] V. G. Romanov, Obratnye zadachi matematicheskoi fiziki, Nauka, Moskva, 1984 | MR

[3] A. L. Karchevskii, “O povedenii funktsionala nevyazki dlya odnomernoi giperbolicheskoi obratnoi zadachi”, Sibirskii zhurnal vychislitelnoi matematiki, 2 (1999), 137–160

[4] A. L. Karchevsky, “Properties of the misfit functional for a nonlinear one-dimentioanal coefficient hyperbolic inverse problem”, Journal of Inverse and Ill-posed Problems, 5 (1997), 139–163 | DOI | MR | Zbl

[5] A. L. Karchevsky, “Finite-difference coefficient inverse problem and properties of the misfit functional”, Journal of Inverse and Ill-Posed Problems, 6 (1998), 431–452 | DOI | MR | Zbl