Direct and iteration methods for solving inverse and ill-posed problems
Sibirskie èlektronnye matematičeskie izvestiâ, Tome 5 (2008), pp. 595-608.

Voir la notice de l'article provenant de la source Math-Net.Ru

In this paper we describe direct and iteration methods for solving inverse and ill-posed problems such as backwards parabolic equation and Cauchy problem for Laplace equation. We as well study the inverse problem for the acoustic equation. The boundary control method and the Gel'fand–Levitan–Krein method are investigated for recovering some characteristics of the density. We describe numerical algorithm for the inverse acoustic problem. The nonlinear inverse problem is reduced to the system of linear algebraic equations. We demonstrate the results of computer simulation.
Keywords: inverse and ill-posed problems, conditional stability estimate, numerical methods.
@article{SEMR_2008_5_a51,
     author = {S. I. Kabanikhin and M. A. Shishlenin},
     title = {Direct and iteration methods for solving inverse and ill-posed problems},
     journal = {Sibirskie \`elektronnye matemati\v{c}eskie izvesti\^a},
     pages = {595--608},
     publisher = {mathdoc},
     volume = {5},
     year = {2008},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/SEMR_2008_5_a51/}
}
TY  - JOUR
AU  - S. I. Kabanikhin
AU  - M. A. Shishlenin
TI  - Direct and iteration methods for solving inverse and ill-posed problems
JO  - Sibirskie èlektronnye matematičeskie izvestiâ
PY  - 2008
SP  - 595
EP  - 608
VL  - 5
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/SEMR_2008_5_a51/
LA  - ru
ID  - SEMR_2008_5_a51
ER  - 
%0 Journal Article
%A S. I. Kabanikhin
%A M. A. Shishlenin
%T Direct and iteration methods for solving inverse and ill-posed problems
%J Sibirskie èlektronnye matematičeskie izvestiâ
%D 2008
%P 595-608
%V 5
%I mathdoc
%U http://geodesic.mathdoc.fr/item/SEMR_2008_5_a51/
%G ru
%F SEMR_2008_5_a51
S. I. Kabanikhin; M. A. Shishlenin. Direct and iteration methods for solving inverse and ill-posed problems. Sibirskie èlektronnye matematičeskie izvestiâ, Tome 5 (2008), pp. 595-608. http://geodesic.mathdoc.fr/item/SEMR_2008_5_a51/

[1] S. I. Kabanikhin, K. T. Iskakov, Obratnye i nekorrektnye zadachi dlya giperbolicheskikh uravnenii, KazNPU, Almaty, 2007

[2] S. I. Kabanikhin, Obratnye i nekorrektnye zadachi, Izdatelskii tsentr Akademiya, Moskva, 2008

[3] S. I. Kabanikhin and M. A. Shishlenin, “The Gel'fand-Levitan-Krein method in an inverse acoustic problem”, Applicable Analysis, 2008, sdana v pechat

[4] S. I. Kabanikhin and M. A. Shishlenin, “Determination of some properties of the density in multidimensional inverse acoustic problem”, Journal of Physics: Conference Series, 2008, sdana v pechat

[5] S. K. Godunov i dr., Garantirovannaya tochnost resheniya sistem lineinykh uravnenii v evklidovykh prostranstvakh, Nauka, Novosibirsk, 1992

[6] S. I. Kabanikhin, M. A. Bektemesov, A. T. Nurseitova, Iteratsionnye metody resheniya obratnykh i nekorrektnykh zadach s dannymi na chasti granitsy, Almaty, Novosibirsk, 2006

[7] Kabanikhin S. I., Proektsionno-raznostnye metody opredeleniya koeffitsientov giperbolicheskikh uravnenii, Nauka. Sibirskoe otd-nie, Novosibirsk, 1988 | MR | Zbl

[8] Kabanikhin S. I., Satybaev A. D., Shishlenin M. A., Direct Methods of Solving Inverse Hyperbolic Problems, VSP, The Netherlands, 2005 | MR | Zbl