Inverse problems for evolution equations
Sibirskie èlektronnye matematičeskie izvestiâ, Tome 5 (2008), pp. 549-580.

Voir la notice de l'article provenant de la source Math-Net.Ru

We discuss some inverse problems for evolution equations. The theorems of existence and uniqueness are formulated.
Keywords: inverse problems
Mots-clés : evolution equations.
@article{SEMR_2008_5_a49,
     author = {Yu. E. Anikonov and N. L. Abasheieva and N. B. Aiupova and A. I. Kozhanov and M. V. Neshchadim and I. R. Valitov},
     title = {Inverse problems for evolution equations},
     journal = {Sibirskie \`elektronnye matemati\v{c}eskie izvesti\^a},
     pages = {549--580},
     publisher = {mathdoc},
     volume = {5},
     year = {2008},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/SEMR_2008_5_a49/}
}
TY  - JOUR
AU  - Yu. E. Anikonov
AU  - N. L. Abasheieva
AU  - N. B. Aiupova
AU  - A. I. Kozhanov
AU  - M. V. Neshchadim
AU  - I. R. Valitov
TI  - Inverse problems for evolution equations
JO  - Sibirskie èlektronnye matematičeskie izvestiâ
PY  - 2008
SP  - 549
EP  - 580
VL  - 5
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/SEMR_2008_5_a49/
LA  - ru
ID  - SEMR_2008_5_a49
ER  - 
%0 Journal Article
%A Yu. E. Anikonov
%A N. L. Abasheieva
%A N. B. Aiupova
%A A. I. Kozhanov
%A M. V. Neshchadim
%A I. R. Valitov
%T Inverse problems for evolution equations
%J Sibirskie èlektronnye matematičeskie izvestiâ
%D 2008
%P 549-580
%V 5
%I mathdoc
%U http://geodesic.mathdoc.fr/item/SEMR_2008_5_a49/
%G ru
%F SEMR_2008_5_a49
Yu. E. Anikonov; N. L. Abasheieva; N. B. Aiupova; A. I. Kozhanov; M. V. Neshchadim; I. R. Valitov. Inverse problems for evolution equations. Sibirskie èlektronnye matematičeskie izvestiâ, Tome 5 (2008), pp. 549-580. http://geodesic.mathdoc.fr/item/SEMR_2008_5_a49/

[1] N. L. Abasheeva, “Lineinaya obratnaya zadacha dlya operatorno-differentsialnogo uravneniya s parametrom”, Neklassicheskie uravneniya matematicheskoi fiziki, Izd-vo In-ta matematiki, Novosibirsk, 2007, 5–14

[2] Yu. E. Anikonov, N. B. Ayupova, Formuly dlya reshenii nachalno-kraevykh zadach i koeffitsientov uravnenii 2-go poryadka, Preprint RAN. Sib. otd-nie. In-t matematiki; No 171, Novosibirsk, 2006, 46 pp.

[3] Yu. E. Anikonov, M. V. Neschadim, “Tozhdestvo dlya priblizhennykh kvantovykh uravnenii i obratnye zadachi”, Sibirskii zhurnal industrialnoi matematiki, 10:4 (2007), 3–9 | MR

[4] A. I. Kozhanov, “O razreshimosti pervoi nachalno-kraevoi zadachi dlya odnogo klassa vyrozhdayuschikhsya uravnenii sobolevskogo tipa vysokogo poryadka”, Neklassicheskie uravneniya matematicheskoi fiziki, Izd-vo IM SO RAN, Novosibirsk, 2007, 172–181 | MR

[5] A. I. Kozhanov, I. R. Valitov, “O razreshimosti nekotorykh giperbolicheskikh obratnykh zadach s dvumya neizvestnymi koeffitsientami”, Matematicheskie zametki YaGU, 14 (2007), 3–16 | MR

[6] M. V. Neschadim, “Nekotorye voprosy konstruktivnykh metodov v teorii obratnykh zadach”, Sibirskii zhurnal industrialnoi matematiki, 10 (2007), 101–109

[7] Anikonov Yu. E., “Selected formulas of the theory of inverse problems”, JIIPP, 15 (2007), 549–568 | DOI | MR | Zbl

[8] Yu. E. Anikonov, N. B. Ayupova, “Table of solutions and coefficient for second-order differential equations and inverse problems”, Journal of Inverse and Ill-Posed Problems, 15 (2007), 867–892 | DOI | MR

[9] M. V. Neshchadim, “Inverse problems for the Boltsmann–Vlasov kinetic equations representaation for solutions and coefficients”, Journal of Applied and Indusrial Mathematics, 1 (2007), 90–99 | DOI

[10] Yu. E. Anikonov, Predstavleniya reshenii i obratnye zadachi dlya evolyutsionnykh i differentsialno-raznostnykh uravnenii, Preprint No 108 / IM SO RAN, IM SO RAN, Novosibirsk, 2003

[11] Yu. E. Anikonov, “Inverse problems for evolution and differential-difference equations with a parameter”, Journal of Inverse and Ill-Posed Problems, 11 (2003), 439–473 | DOI | MR | Zbl

[12] N. L. Abasheeva, “Identification of a source in parabolic and hyperbolic equations with a parameter”, Journal of Inverse and Ill-Posed Problems, 17:6 (2007) | MR

[13] A. I. Prilepko, A. B. Kostin, “O nekotorykh obratnykh zadachakh dlya parabolicheskikh uravnenii s finalnym i integralnym nablyudeniem”, Matematicheskii sbornik, 183 (1992), 49–68 | MR | Zbl

[14] A. I. Prilepko, A. B. Kostin, “Ob obratnykh zadachakh opredeleniya koeffitsienta v parabolicheskom uravnenii. II”, Sibirskii matematicheskii zhurnal, 34 (1993), 147–162 | MR | Zbl

[15] A. I. Kozhanov, Composite Type Equations and Inverse Problems, VSP, Utrecht, 1999 | MR | Zbl

[16] S. G. Pyatkov, “Solvability of some inverse problems for parabolic equations”, Journal of Inverse and Ill-Posed Problems, 12 (2004), 397–412 | DOI | MR | Zbl

[17] N. L. Abasheeva, “O lineinoi obratnoi zadache dlya parabolicheskogo uravneniya vtorogo poryadka”, Sibirskii zhurnal industrialnoi matematiki, 9 (2006), 3–12 | MR

[18] Kh. Tribel, Teoriya interpolyatsii. Funktsionalnye prostranstva. Differentsialnye operatory, Mir, Moskva, 1980 | MR

[19] M. V. Neschadim, “Nekotorye predstavleniya reshenii i koeffitsientov kineticheskogo uravneniya elektrodinamiki”, Sibirskii zhurnal industrialnoi matematiki, 6 (2003), 114–118

[20] D. I. Blokhintsev, Kvantovaya mekhanika, Izd-vo Moskovskogo universiteta, Moskva, 1988