The inverse problem of atmosphere thermal sounding
Sibirskie èlektronnye matematičeskie izvestiâ, Tome 5 (2008), pp. 518-523.

Voir la notice de l'article provenant de la source Math-Net.Ru

For solving nonlinear base equation and finding height profiles of temperature and methane from real spectra measured satellite sensor AQUA, the iterative regularized Newton method and the modified Levenberg–Marquardt method are applied. In result map of full space content of methane for Khanty-Mansiysk region was constructed.
Keywords: inverse problem, atmosphere thermal sounding, nonlinear equation system, spectrum satellite data, regular methods.
@article{SEMR_2008_5_a45,
     author = {V. V. Vasin and K. G. Gribanov and V. I. Zakharov},
     title = {The inverse problem of atmosphere thermal sounding},
     journal = {Sibirskie \`elektronnye matemati\v{c}eskie izvesti\^a},
     pages = {518--523},
     publisher = {mathdoc},
     volume = {5},
     year = {2008},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/SEMR_2008_5_a45/}
}
TY  - JOUR
AU  - V. V. Vasin
AU  - K. G. Gribanov
AU  - V. I. Zakharov
TI  - The inverse problem of atmosphere thermal sounding
JO  - Sibirskie èlektronnye matematičeskie izvestiâ
PY  - 2008
SP  - 518
EP  - 523
VL  - 5
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/SEMR_2008_5_a45/
LA  - ru
ID  - SEMR_2008_5_a45
ER  - 
%0 Journal Article
%A V. V. Vasin
%A K. G. Gribanov
%A V. I. Zakharov
%T The inverse problem of atmosphere thermal sounding
%J Sibirskie èlektronnye matematičeskie izvestiâ
%D 2008
%P 518-523
%V 5
%I mathdoc
%U http://geodesic.mathdoc.fr/item/SEMR_2008_5_a45/
%G ru
%F SEMR_2008_5_a45
V. V. Vasin; K. G. Gribanov; V. I. Zakharov. The inverse problem of atmosphere thermal sounding. Sibirskie èlektronnye matematičeskie izvestiâ, Tome 5 (2008), pp. 518-523. http://geodesic.mathdoc.fr/item/SEMR_2008_5_a45/

[1] Lelieveld J., Crutzen P. J., and Dentender F. J., “Changing concentration, lifetime and climate forcing of atmospheric methane”, Tellus B, 50 (1998), 128–150 | DOI

[2] Houweling S., Kaminski T., Dentender F. J., Lelieveld J., Heimann M., “Inverse modelling of methane sources and sinks using adjoint of a global transpert model”, J. Geophys. Res., 104 (1999), 26137–26160 | DOI

[3] Meirink J. F., Eskes H. J., and Goede P. H., “Sensitivity analysis of methane emissions derived from SCIAMACHY observations through inverse modelling”, Atmos. Chem. Phys., 6 (2006), 1275–1292 | DOI

[4] Butler T. M., Simmonds I., and Rayner P. J., “Mass balance inverse modelling of methane in the 1990s using a Chemistry Transport Model”, Atmos. Chem. Phys., 4 (2004), 2561–2580 | DOI

[5] Nakazawa T., Sugawara S., Inoue G., Machida T., Makshyutov S., and Mukai H., “Aircraft measurements of the concentrations of $\mathrm{CO}_2$, $\mathrm{CH}_4$, $\mathrm N_2\mathrm O$, and $\mathrm{CO}$ and the carbon and oxigen isotopic ratios of $\mathrm{CO}_2$ in the troposphere over Russia”, J. Geophys. Res. D, 102:3 (1997), 3843–3859 | DOI

[6] Pagano T. S., Aumann H. H., Hagan D. E., Overoye K., “Prelaunch and in-flight calibration of the Atmospheric Infrared Sounder (AIRS)”, IEEE Transactions of Geoscience and Remote Sensing, 41 (2003), 253–273 | DOI

[7] Gribanov K. G., Zakharov V. I., Tashkun S. A., Tyuterev Vl. G., “A new software tool for radiative transfer calculations and its application to IMG/ADEOS data”, J. Quant. Spectrosc. Radiat. Transfer, 68:4 (2001), 435–451 | DOI

[8] Gribanov K. G., Toptygin A. Yu., Zakharov V. I., “Application of multilayer perceptron to high-resolution infrared measurement retrieval”, SPIE Proc., 6580 (2006), 65800R | DOI

[9] Gribanov K. G., Zakharov V. I., Vasin V. V., “Iterativnaya regulyarizatsiya v zadache soderzhaniya $\mathrm{CO}_2$ v atmosfere po dannym sputnikovogo zondirovaniya”, Algoritmicheskii analiz neustoichivykh zadach, Tez. mezhd. konf. (Ekaterinburg, 1–6 sentyabrya 2008 g.), Izd-vo Ural. un-ta, Ekaterinburg, 2008, 119–120 pp.