The regular methods for inverse gravity problem solving
Sibirskie èlektronnye matematičeskie izvestiâ, Tome 5 (2008), pp. 509-517.

Voir la notice de l'article provenant de la source Math-Net.Ru

For solving three-dimensional inverse gravity problem on reconstruction interface between two media with constant density regular methods are supposed. The methods of the solution contain two stage. On the first stage from measured gravity field the anomalous effect is selected with using regularizing technique. On the second stage the iteratively regularized Newton and Fletcher-Reevs processes are applied to solve the nonlinear integral equation of gravimetry. Results of model numerical experiments on parallel computing system MVS-1000 are demonstrated.
Keywords: inverse gravity problem, integral equation, parallel regular algorithms, parallel computing system MVS-1000.
@article{SEMR_2008_5_a44,
     author = {E. N. Akimova and G. G. Skorik},
     title = {The regular methods for inverse gravity problem solving},
     journal = {Sibirskie \`elektronnye matemati\v{c}eskie izvesti\^a},
     pages = {509--517},
     publisher = {mathdoc},
     volume = {5},
     year = {2008},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/SEMR_2008_5_a44/}
}
TY  - JOUR
AU  - E. N. Akimova
AU  - G. G. Skorik
TI  - The regular methods for inverse gravity problem solving
JO  - Sibirskie èlektronnye matematičeskie izvestiâ
PY  - 2008
SP  - 509
EP  - 517
VL  - 5
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/SEMR_2008_5_a44/
LA  - ru
ID  - SEMR_2008_5_a44
ER  - 
%0 Journal Article
%A E. N. Akimova
%A G. G. Skorik
%T The regular methods for inverse gravity problem solving
%J Sibirskie èlektronnye matematičeskie izvestiâ
%D 2008
%P 509-517
%V 5
%I mathdoc
%U http://geodesic.mathdoc.fr/item/SEMR_2008_5_a44/
%G ru
%F SEMR_2008_5_a44
E. N. Akimova; G. G. Skorik. The regular methods for inverse gravity problem solving. Sibirskie èlektronnye matematičeskie izvestiâ, Tome 5 (2008), pp. 509-517. http://geodesic.mathdoc.fr/item/SEMR_2008_5_a44/

[1] Martyshko P. S., Prutkin I. L., “Tekhnologiya razdeleniya istochnikov gravitatsionnogo polya po glubine”, Geofizicheskii zhurnal, 25:3 (2003), 159–168

[2] Samarskii A. A., Nikolaev E. S., Metody resheniya setochnykh uravnenii, Nauka, M., 1978, 590 pp. | MR

[3] Akimova E. N., Gemaidinov D. V., “Parallelnye algoritmy resheniya zadachi gravimetrii o vosstanovlenii plotnosti v sloe”, Trudy instituta matematiki i mekhaniki, 13, no. 3, UrO RAN, Ekaterinburg, 2007, 3–21

[4] Yanenko N. N., Konovalov A. N., Bugrov A. N., Shustov S. V., “Ob organizatsii parallelnykh vychislenii i “rasparallelivanii” progonki”, Chislennye metody mekhaniki sploshnoi sredy, 9:7 (1978), 139–146

[5] Bakushinsky A., Goncharsky A., Ill-Posed Problems: Theory and Applications, Cluver Publishers, 1994 | MR

[6] Akimova E. N., “O skhodimosti metoda Nyutona pri reshenii obratnoi zadachi gravimetrii”, Algoritmicheskii analiz neustoichivykh zadach, Tez. mezhd. konf. (Ekaterinburg, 1–6 sentyabrya 2008 g.), Izd-vo Ural. un-ta, Ekaterinburg, 2008, 12–13

[7] Faddeev V. K., Faddeeva V. N., Vychislitelnye metody lineinoi algebry, Gos. izdat. fiz.- mat. literatury, M., 1963, 734 pp. | MR

[8] Baranov A. V., Latsis A. O., Sazhin C. V., Khramtsov M. Yu., The MVS-1000 System User's Guide, http://parallel.ru/mvs/user.html

[9] Akimova E. N., Vasin V. V., Perestoronina G. Ya., Timerkhanova L. Yu., Martyshko P. S., Koksharov D. E., “O regulyarnykh metodakh resheniya obratnykh zadach gravimetrii na mnogoprotsessornom vychislitelnom komplekse”, Vychislitelnye metody i programmirovanie. Moskva: MGU, 8:1 (2007), 107–116

[10] Akimova E. N., Vasin V. V., Skorik G. G., “Reshenie obratnykh zadach magnitometrii i gravimetrii o vosstanovlenii razdelyayuschei poverkhnosti sred”, Materialy 35-i sessii mezhdunarodnogo seminara im. D. G. Uspenskogo “Voprosy teorii i praktiki geologicheskoi interpretatsii gravitatsionnykh, magnitnykh i elektricheskikh polei”, UGTU, Ukhta, 2008, 8–11 pp.