X-ray and optical tomography problems
Sibirskie èlektronnye matematičeskie izvestiâ, Tome 5 (2008), pp. 483-498.

Voir la notice de l'article provenant de la source Math-Net.Ru

The problems of X-ray and optical tomography have been considered in the review. A method for determination of a substance chemical composition based on the use of X-ray irradiation results has been proposed. The solution uniqueness for the problem of the attenuation coefficient determination for the vector transfer equation under a special external radiation source has been shown. The problems of determination of the refraction indices and optical thicknesses for a layered medium have been studied. A computer verification of the proposed numerical algorithms has been carried out.
Keywords: radiation transfer theory, inverse problems, tomography.
@article{SEMR_2008_5_a42,
     author = {A. E. Kovtanyuk and V. M. Moon and V. G. Nazarov and I. V. Prokhorov and I. P. Yarovenko},
     title = {X-ray and optical tomography problems},
     journal = {Sibirskie \`elektronnye matemati\v{c}eskie izvesti\^a},
     pages = {483--498},
     publisher = {mathdoc},
     volume = {5},
     year = {2008},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/SEMR_2008_5_a42/}
}
TY  - JOUR
AU  - A. E. Kovtanyuk
AU  - V. M. Moon
AU  - V. G. Nazarov
AU  - I. V. Prokhorov
AU  - I. P. Yarovenko
TI  - X-ray and optical tomography problems
JO  - Sibirskie èlektronnye matematičeskie izvestiâ
PY  - 2008
SP  - 483
EP  - 498
VL  - 5
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/SEMR_2008_5_a42/
LA  - ru
ID  - SEMR_2008_5_a42
ER  - 
%0 Journal Article
%A A. E. Kovtanyuk
%A V. M. Moon
%A V. G. Nazarov
%A I. V. Prokhorov
%A I. P. Yarovenko
%T X-ray and optical tomography problems
%J Sibirskie èlektronnye matematičeskie izvestiâ
%D 2008
%P 483-498
%V 5
%I mathdoc
%U http://geodesic.mathdoc.fr/item/SEMR_2008_5_a42/
%G ru
%F SEMR_2008_5_a42
A. E. Kovtanyuk; V. M. Moon; V. G. Nazarov; I. V. Prokhorov; I. P. Yarovenko. X-ray and optical tomography problems. Sibirskie èlektronnye matematičeskie izvestiâ, Tome 5 (2008), pp. 483-498. http://geodesic.mathdoc.fr/item/SEMR_2008_5_a42/

[1] Naidenov S. V., Ryzhikov V. D., “Ob opredelenii khimicheskogo sostava metodom multienergeticheskoi radiografii”, Pisma v ZhTF, 28:9 (2002), 6–13

[2] Zotev D. V., Filippov M. N., Yagola A. G., “Ob odnoi obratnoi zadache kolichestvennogo rentgenospektralnogo mikroanaliza”, Vychisl. metody i programmirovanie, 4 (2003), 26–32

[3] Fedoseev V. M., Rentgenovskii sposob obnaruzheniya veschestva po znacheniyu ego effektivnogo atomnogo nomera, Patent RF No 209579, 1997

[4] Rumyantsev A. N., Mostovoi V. I., Sukhoruchkin V. K., Yakovlev G. V., Sposob obnaruzheniya i nerazrushayuschego analiza veschestv, soderzhaschikh yadra legkikh elementov, Patent RF No 2095796, 1997

[5] V. G. Nazarov, “Opredelenie khimicheskogo sostava i struktury neodnorodnoi sredy metodom rentgenovskoi tomografii”, Zhurnal vychislitelnoi matematiki i matematicheskoi fiziki, 47:8 (2007), 1413–1422 | MR

[6] Anikonov D. S., Kovtanyuk A. E., Prokhorov I. V., Ispolzovanie uravneniya perenosa v tomografii, Logos, M., 2000

[7] Anikonov D. S., Nazarov V. G., Prokhorov I. V., Poorly visible media in $X$-ray tomography, VSP, Utrecht, Boston, 2002

[8] Chandrasekar S., Perenos luchistoi energii, IL, M., 1953

[9] Rozenberg G. V., “Vektor-parametr Stoksa”, Uspekhi fiz. nauk, 56:1 (1955), 77–109

[10] Sushkevich T. A., Strelkov S. A., Maksakova S. V., “Matematicheskaya model perenosa polyarizovannogo izlucheniya”, Matematicheskoe modelirovanie, 10:7 (1998), 61–75 | MR | Zbl

[11] Siewert C. E., “Determination of the Single Scattering Albedo from Polarization Measurements of the Rayleigh Atmosphere”, Astrophysics and Space Sciences, 60 (1979), 237–239 | DOI

[12] Siewert C. E., “Solution an Inverse Problem in Radiative Transfer with Polarization”, J. Quant. Spectrosc. Radiat. Transfer., 30:6 (1983), 523–526 | DOI | MR

[13] Ukhinov S. A., Yurkov D. I., “Computation of the parametric derivatives of polarized radiation and the solution of inverse atmospheric optics problems”, Rus. J. Numer. Anal. Math. Modelling, 17:3 (2002), 283–303 | MR | Zbl

[14] Kovtanyuk A. E., Prokhorov I. V., “Tomography problem for the polarized-radiation transfer equation”, Journal Inverse and Ill-Posed Problems, 14:6 (2006), 609–620 | DOI | MR | Zbl

[15] Kovtanyuk A. E., Prokhorov I. V., “Chislennoe reshenie obratnoi zadachi dlya uravneniya perenosa polyarizovannogo izlucheniya”, Sibirskii zhurnal vychislitelnoi matematiki, 11:1 (2008), 55–68 | Zbl

[16] Prokhorov I. V., Yarovenko I. P., “Issledovanie zadach opticheskoi tomografii metodami teorii perenosa izlucheniya”, Optika i spektroskopiya, 101:5 (2006), 817–824

[17] Yarovenko I. P., “Chislennoe reshenie kraevykh zadach dlya uravneniya perenosa izlucheniya v opticheskom diapazone”, Vychislitelnye metody i programmirovanie, 7 (2006), 93–104

[18] Yarovenko I. P., Matematicheskoe modelirovanie protsessa perenosa izlucheniya v shirokom diapazone energii s prilozheniyami k zadacham rentgenovskoi i opticheskoi tomografii, Dissertatsiya na soiskanie uchenoi stepeni kandidata fiziko-matematicheskikh nauk po spetsialnosti 05.13.18. Vladivostok, 2007, 144 pp.

[19] Prokhorov I. V., Matematicheskie zadachi teorii perenosa izlucheniya, Dissertatsiya na soiskanie uchenoi stepeni doktora fiziko-matematicheskikh nauk po spetsialnosti 05.13.18, Vladivostok, 2007, 256 pp.

[20] Prokhorov I. V., Yarovenko I. P., and Nazarov V. G., “Optical tomography problems at layered media”, Inverse Problems IOP Publishing LTD, 24:2 (2008), 025019, 13 pp. | MR | Zbl