Condenser capacities and majorization principles in the geometric function theory of a~complex variable
Sibirskie èlektronnye matematičeskie izvestiâ, Tome 5 (2008), pp. 465-482.

Voir la notice de l'article provenant de la source Math-Net.Ru

This survey paper is devoted to applications of potential theory to some extremal problems of the geometric function theory of a complex variable. In particular, we present variational principles of conformal mappings that are derived from the properties of generalized condensers and symmetrization in a unified way. The variations of the Robin functions under deformation of a domain or a portion of its boundary are considered. Applications of condensers and majorization principles include distortion theorems for holomorphic functions, covering theorem for $p$-valent functions in a circular annulus, Bernstein-type inequalities for rational functions with prescribed poles, polynomial inequalities and more.
Keywords: Condenser capacity, hyperbolic capacity, logarithmic capacity, Robin function, symmetrization, dissimmetrization, majorization principles, conformal mappings, distortion theorems, covering theorems, $p$-valent functions, rational functions, polynomials.
Mots-clés : variational principles
@article{SEMR_2008_5_a41,
     author = {V. N. Dubinin},
     title = {Condenser capacities and majorization principles in the geometric function theory of a~complex variable},
     journal = {Sibirskie \`elektronnye matemati\v{c}eskie izvesti\^a},
     pages = {465--482},
     publisher = {mathdoc},
     volume = {5},
     year = {2008},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/SEMR_2008_5_a41/}
}
TY  - JOUR
AU  - V. N. Dubinin
TI  - Condenser capacities and majorization principles in the geometric function theory of a~complex variable
JO  - Sibirskie èlektronnye matematičeskie izvestiâ
PY  - 2008
SP  - 465
EP  - 482
VL  - 5
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/SEMR_2008_5_a41/
LA  - ru
ID  - SEMR_2008_5_a41
ER  - 
%0 Journal Article
%A V. N. Dubinin
%T Condenser capacities and majorization principles in the geometric function theory of a~complex variable
%J Sibirskie èlektronnye matematičeskie izvestiâ
%D 2008
%P 465-482
%V 5
%I mathdoc
%U http://geodesic.mathdoc.fr/item/SEMR_2008_5_a41/
%G ru
%F SEMR_2008_5_a41
V. N. Dubinin. Condenser capacities and majorization principles in the geometric function theory of a~complex variable. Sibirskie èlektronnye matematičeskie izvestiâ, Tome 5 (2008), pp. 465-482. http://geodesic.mathdoc.fr/item/SEMR_2008_5_a41/

[1] Dubinin V. N., “Emkosti kondensatorov, obobscheniya lemm Gretsha i simmetrizatsiya”, Zap. nauchn. semin. POMI, 337, 2006, 73–100 | MR | Zbl

[2] Dubinin V. N., Prilepkina E. G., “O variatsionnykh printsipakh konformnykh otobrazhenii”, Algebra i analiz, 18:3 (2006), 39–62 | MR

[3] Dubinin V. N., Vuorinen M., Robin functions and distortion theorems for regular mappings, Reports in Math. Depart. of Math. and Stat. Univ. of Helsinki. Preprint 454, 2007, 21 pp.

[4] Dubinin V. N., Karp D. B., “Capacities of certain plane condensers and sets under simple geometrics transformations”, Complex Variables, 53:6 (2008), 607–622 | MR | Zbl

[5] Dubinin V. N., Vuorinen M., “On conformal modules of polygonal quadrilaterals”, Israel Journal Math., 2008, prinyata k pechati | Zbl

[6] Dubinin V. N., “O primenenii lemmy Shvartsa k neravenstvam dlya tselykh funktsii s ogranicheniyami na nuli”, Zap. nauchn. semin. POMI, 337, 2006, 101–112 | MR | Zbl

[7] Dubinin V. N., “Neravenstva dlya kriticheskikh znachenii polinomov”, Matem. sbornik, 197:8 (2006), 63–72 | MR | Zbl

[8] Dubinin V. N., “Lemniskata i neravenstva dlya logarifmicheskoi emkosti kontinuuma”, Matem. zametki, 80:1 (2006), 33–37 | MR | Zbl

[9] Dubinin V. N., Kalmykov S. I., “Printsip mazhoratsii dlya meromorfnykh funktsii”, Matem. sbornik, 198:12 (2007), 37–46 | MR | Zbl

[10] Dubinin V. N., Kim V. Yu., “O pokrytii radialnykh otrezkov pri $p$–listnykh otobrazheniyakh kruga i koltsa”, Dalnevost. matem. zhurnal, 7:1–2 (2007), 40–47

[11] Dubinin V. N., Kim V. Yu., “Teoremy iskazheniya dlya regulyarnykh i ogranichennykh v kruge funktsii”, Zap. nauchn. semin. POMI, 350, 2007, 26–39

[12] Goluzin G. M., Geometricheskaya teoriya funktsii kompleksnogo peremenogo, Nauka, M., 1966 | MR

[13] Lavrentev M. A., Shabat B. V., Metody teorii funktsii kompleksnogo peremennogo, Nauka, M., 1973 | MR

[14] Lyashko I. I., Velikoivanenko I. M., Lavrik V. I., Mistetskii G. E., Metod mazhorantnykh oblastei v teorii filtratsii, Naukova dumka, Kiev, 1974 | MR

[15] Duren P., “Robin capacity”, Computational methods and Function Theory (CMFT'97), eds. N. Papamichael, St. Ruscheweyh, E. B. Saff, World scientific Publishing Co., 1999, 177–190 | MR | Zbl

[16] Dubinin V. N., “Obobschennye kondensatory i asimptotika ikh emkostei pri vyrozhdenii nekotorykh plastin”, Zap. nauchnykh seminarov POMI, 302, 2003, 38–51 | MR

[17] Duren P., Schiffer M., “Robin functions and energy functionals of multiply connected domains”, Pacific J. Math., 148 (1991), 251–273 | MR | Zbl

[18] Duren P., Schiffer M. M., “Robin functions and distortion of capacity under conformal mapping”, Complex Variables, 21 (1993), 189–196 | MR | Zbl

[19] Nasyrov S., “Robin capacity and lift of infinitely thin airfoils”, Complex Variables, 47:2 (2002), 93–107 | MR | Zbl

[20] Pommerenke Ch., Boundary behaviour of conformal maps, Springer, Berlin, 1992 | MR | Zbl

[21] Barnard R. W., Richardson K., Solynin A. Yu., “Concentration of area in half-planes”, Proc. Amer. Math. Soc., 133 (2005), 2091–2099 | DOI | MR | Zbl

[22] Dubinin V. N., “Simmetrizatsiya v geometricheskoi teorii funktsii kompleksnogo peremennogo”, Uspekhi matem. nauk, 49:1 (1994), 3–76 | MR | Zbl

[23] Dochev K., “O nekotorykh ekstremalnykh svoistvakh mnogochlenov”, Dokl. AN SSSR, 153:3 (1963), 519–521 | Zbl

[24] Lukashov A. L., “Neravenstva dlya proizvodnykh ratsionalnykh funktsii na neskolkikh otrezkakh”, Izv. RAN. Ser. mat., 68:3 (2004), 115–138 | MR

[25] Lukashov A. L., “Otsenki proizvodnykh ratsionalnykh funktsii i chetvertaya zadacha Zolotareva”, Algebra i analiz, 19:2 (2007), 122–130 | MR

[26] Smale S., “The fundamental theorem of algebra and complexity theory”, Bull. Amer. Math. Soc., 4:1 (1981), 1–36 | DOI | MR | Zbl

[27] Rahman Q. I., Schmeisser G., Analytic theory of polynomials, London Math. Soc. Monographs, New Series, 26, Clarendon Press, Oxford, 2002 | MR

[28] Kirsch S., “Transfinite diameter, Chebyshev constant and capacities”, Handbook of complex analysis: Geometric function theory, 2, Elsevier, Amsterdam, 2005, 243–308 | MR | Zbl

[29] Dubinin V. N., Karp D. B., “Generalized condencers and distortion theorems for conformal mappings of planar domain”, Contemporary Mathematics, 424, 2007, 33–51 | MR | Zbl