Condenser capacities and majorization principles in the geometric function theory of a~complex variable
Sibirskie èlektronnye matematičeskie izvestiâ, Tome 5 (2008), pp. 465-482
Voir la notice de l'article provenant de la source Math-Net.Ru
This survey paper is devoted to applications of potential theory to some extremal problems of the geometric function theory of a complex variable. In particular, we present variational principles of conformal mappings that are derived from the properties of generalized condensers and symmetrization in a unified way. The variations of the Robin functions under deformation of a domain or a portion of its boundary are considered. Applications of condensers and majorization principles include distortion theorems for holomorphic functions, covering theorem for $p$-valent functions in a circular annulus, Bernstein-type inequalities for rational functions with prescribed poles, polynomial inequalities and more.
Keywords:
Condenser capacity, hyperbolic capacity, logarithmic capacity, Robin function, symmetrization, dissimmetrization, majorization principles, conformal mappings, distortion theorems, covering theorems, $p$-valent functions, rational functions, polynomials.
Mots-clés : variational principles
Mots-clés : variational principles
@article{SEMR_2008_5_a41,
author = {V. N. Dubinin},
title = {Condenser capacities and majorization principles in the geometric function theory of a~complex variable},
journal = {Sibirskie \`elektronnye matemati\v{c}eskie izvesti\^a},
pages = {465--482},
publisher = {mathdoc},
volume = {5},
year = {2008},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/SEMR_2008_5_a41/}
}
TY - JOUR AU - V. N. Dubinin TI - Condenser capacities and majorization principles in the geometric function theory of a~complex variable JO - Sibirskie èlektronnye matematičeskie izvestiâ PY - 2008 SP - 465 EP - 482 VL - 5 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/SEMR_2008_5_a41/ LA - ru ID - SEMR_2008_5_a41 ER -
%0 Journal Article %A V. N. Dubinin %T Condenser capacities and majorization principles in the geometric function theory of a~complex variable %J Sibirskie èlektronnye matematičeskie izvestiâ %D 2008 %P 465-482 %V 5 %I mathdoc %U http://geodesic.mathdoc.fr/item/SEMR_2008_5_a41/ %G ru %F SEMR_2008_5_a41
V. N. Dubinin. Condenser capacities and majorization principles in the geometric function theory of a~complex variable. Sibirskie èlektronnye matematičeskie izvestiâ, Tome 5 (2008), pp. 465-482. http://geodesic.mathdoc.fr/item/SEMR_2008_5_a41/