Voir la notice de l'article provenant de la source Math-Net.Ru
@article{SEMR_2008_5_a41, author = {V. N. Dubinin}, title = {Condenser capacities and majorization principles in the geometric function theory of a~complex variable}, journal = {Sibirskie \`elektronnye matemati\v{c}eskie izvesti\^a}, pages = {465--482}, publisher = {mathdoc}, volume = {5}, year = {2008}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/SEMR_2008_5_a41/} }
TY - JOUR AU - V. N. Dubinin TI - Condenser capacities and majorization principles in the geometric function theory of a~complex variable JO - Sibirskie èlektronnye matematičeskie izvestiâ PY - 2008 SP - 465 EP - 482 VL - 5 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/SEMR_2008_5_a41/ LA - ru ID - SEMR_2008_5_a41 ER -
%0 Journal Article %A V. N. Dubinin %T Condenser capacities and majorization principles in the geometric function theory of a~complex variable %J Sibirskie èlektronnye matematičeskie izvestiâ %D 2008 %P 465-482 %V 5 %I mathdoc %U http://geodesic.mathdoc.fr/item/SEMR_2008_5_a41/ %G ru %F SEMR_2008_5_a41
V. N. Dubinin. Condenser capacities and majorization principles in the geometric function theory of a~complex variable. Sibirskie èlektronnye matematičeskie izvestiâ, Tome 5 (2008), pp. 465-482. http://geodesic.mathdoc.fr/item/SEMR_2008_5_a41/
[1] Dubinin V. N., “Emkosti kondensatorov, obobscheniya lemm Gretsha i simmetrizatsiya”, Zap. nauchn. semin. POMI, 337, 2006, 73–100 | MR | Zbl
[2] Dubinin V. N., Prilepkina E. G., “O variatsionnykh printsipakh konformnykh otobrazhenii”, Algebra i analiz, 18:3 (2006), 39–62 | MR
[3] Dubinin V. N., Vuorinen M., Robin functions and distortion theorems for regular mappings, Reports in Math. Depart. of Math. and Stat. Univ. of Helsinki. Preprint 454, 2007, 21 pp.
[4] Dubinin V. N., Karp D. B., “Capacities of certain plane condensers and sets under simple geometrics transformations”, Complex Variables, 53:6 (2008), 607–622 | MR | Zbl
[5] Dubinin V. N., Vuorinen M., “On conformal modules of polygonal quadrilaterals”, Israel Journal Math., 2008, prinyata k pechati | Zbl
[6] Dubinin V. N., “O primenenii lemmy Shvartsa k neravenstvam dlya tselykh funktsii s ogranicheniyami na nuli”, Zap. nauchn. semin. POMI, 337, 2006, 101–112 | MR | Zbl
[7] Dubinin V. N., “Neravenstva dlya kriticheskikh znachenii polinomov”, Matem. sbornik, 197:8 (2006), 63–72 | MR | Zbl
[8] Dubinin V. N., “Lemniskata i neravenstva dlya logarifmicheskoi emkosti kontinuuma”, Matem. zametki, 80:1 (2006), 33–37 | MR | Zbl
[9] Dubinin V. N., Kalmykov S. I., “Printsip mazhoratsii dlya meromorfnykh funktsii”, Matem. sbornik, 198:12 (2007), 37–46 | MR | Zbl
[10] Dubinin V. N., Kim V. Yu., “O pokrytii radialnykh otrezkov pri $p$–listnykh otobrazheniyakh kruga i koltsa”, Dalnevost. matem. zhurnal, 7:1–2 (2007), 40–47
[11] Dubinin V. N., Kim V. Yu., “Teoremy iskazheniya dlya regulyarnykh i ogranichennykh v kruge funktsii”, Zap. nauchn. semin. POMI, 350, 2007, 26–39
[12] Goluzin G. M., Geometricheskaya teoriya funktsii kompleksnogo peremenogo, Nauka, M., 1966 | MR
[13] Lavrentev M. A., Shabat B. V., Metody teorii funktsii kompleksnogo peremennogo, Nauka, M., 1973 | MR
[14] Lyashko I. I., Velikoivanenko I. M., Lavrik V. I., Mistetskii G. E., Metod mazhorantnykh oblastei v teorii filtratsii, Naukova dumka, Kiev, 1974 | MR
[15] Duren P., “Robin capacity”, Computational methods and Function Theory (CMFT'97), eds. N. Papamichael, St. Ruscheweyh, E. B. Saff, World scientific Publishing Co., 1999, 177–190 | MR | Zbl
[16] Dubinin V. N., “Obobschennye kondensatory i asimptotika ikh emkostei pri vyrozhdenii nekotorykh plastin”, Zap. nauchnykh seminarov POMI, 302, 2003, 38–51 | MR
[17] Duren P., Schiffer M., “Robin functions and energy functionals of multiply connected domains”, Pacific J. Math., 148 (1991), 251–273 | MR | Zbl
[18] Duren P., Schiffer M. M., “Robin functions and distortion of capacity under conformal mapping”, Complex Variables, 21 (1993), 189–196 | MR | Zbl
[19] Nasyrov S., “Robin capacity and lift of infinitely thin airfoils”, Complex Variables, 47:2 (2002), 93–107 | MR | Zbl
[20] Pommerenke Ch., Boundary behaviour of conformal maps, Springer, Berlin, 1992 | MR | Zbl
[21] Barnard R. W., Richardson K., Solynin A. Yu., “Concentration of area in half-planes”, Proc. Amer. Math. Soc., 133 (2005), 2091–2099 | DOI | MR | Zbl
[22] Dubinin V. N., “Simmetrizatsiya v geometricheskoi teorii funktsii kompleksnogo peremennogo”, Uspekhi matem. nauk, 49:1 (1994), 3–76 | MR | Zbl
[23] Dochev K., “O nekotorykh ekstremalnykh svoistvakh mnogochlenov”, Dokl. AN SSSR, 153:3 (1963), 519–521 | Zbl
[24] Lukashov A. L., “Neravenstva dlya proizvodnykh ratsionalnykh funktsii na neskolkikh otrezkakh”, Izv. RAN. Ser. mat., 68:3 (2004), 115–138 | MR
[25] Lukashov A. L., “Otsenki proizvodnykh ratsionalnykh funktsii i chetvertaya zadacha Zolotareva”, Algebra i analiz, 19:2 (2007), 122–130 | MR
[26] Smale S., “The fundamental theorem of algebra and complexity theory”, Bull. Amer. Math. Soc., 4:1 (1981), 1–36 | DOI | MR | Zbl
[27] Rahman Q. I., Schmeisser G., Analytic theory of polynomials, London Math. Soc. Monographs, New Series, 26, Clarendon Press, Oxford, 2002 | MR
[28] Kirsch S., “Transfinite diameter, Chebyshev constant and capacities”, Handbook of complex analysis: Geometric function theory, 2, Elsevier, Amsterdam, 2005, 243–308 | MR | Zbl
[29] Dubinin V. N., Karp D. B., “Generalized condencers and distortion theorems for conformal mappings of planar domain”, Contemporary Mathematics, 424, 2007, 33–51 | MR | Zbl