Condenser capacities and majorization principles in the geometric function theory of a~complex variable
Sibirskie èlektronnye matematičeskie izvestiâ, Tome 5 (2008), pp. 465-482

Voir la notice de l'article provenant de la source Math-Net.Ru

This survey paper is devoted to applications of potential theory to some extremal problems of the geometric function theory of a complex variable. In particular, we present variational principles of conformal mappings that are derived from the properties of generalized condensers and symmetrization in a unified way. The variations of the Robin functions under deformation of a domain or a portion of its boundary are considered. Applications of condensers and majorization principles include distortion theorems for holomorphic functions, covering theorem for $p$-valent functions in a circular annulus, Bernstein-type inequalities for rational functions with prescribed poles, polynomial inequalities and more.
Keywords: Condenser capacity, hyperbolic capacity, logarithmic capacity, Robin function, symmetrization, dissimmetrization, majorization principles, conformal mappings, distortion theorems, covering theorems, $p$-valent functions, rational functions, polynomials.
Mots-clés : variational principles
@article{SEMR_2008_5_a41,
     author = {V. N. Dubinin},
     title = {Condenser capacities and majorization principles in the geometric function theory of a~complex variable},
     journal = {Sibirskie \`elektronnye matemati\v{c}eskie izvesti\^a},
     pages = {465--482},
     publisher = {mathdoc},
     volume = {5},
     year = {2008},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/SEMR_2008_5_a41/}
}
TY  - JOUR
AU  - V. N. Dubinin
TI  - Condenser capacities and majorization principles in the geometric function theory of a~complex variable
JO  - Sibirskie èlektronnye matematičeskie izvestiâ
PY  - 2008
SP  - 465
EP  - 482
VL  - 5
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/SEMR_2008_5_a41/
LA  - ru
ID  - SEMR_2008_5_a41
ER  - 
%0 Journal Article
%A V. N. Dubinin
%T Condenser capacities and majorization principles in the geometric function theory of a~complex variable
%J Sibirskie èlektronnye matematičeskie izvestiâ
%D 2008
%P 465-482
%V 5
%I mathdoc
%U http://geodesic.mathdoc.fr/item/SEMR_2008_5_a41/
%G ru
%F SEMR_2008_5_a41
V. N. Dubinin. Condenser capacities and majorization principles in the geometric function theory of a~complex variable. Sibirskie èlektronnye matematičeskie izvestiâ, Tome 5 (2008), pp. 465-482. http://geodesic.mathdoc.fr/item/SEMR_2008_5_a41/