The well-posednes of a~convolution equations on a~finite interval and of a~system of Cauchy-type singular integral equations
Sibirskie èlektronnye matematičeskie izvestiâ, Tome 5 (2008), pp. 456-464
Voir la notice de l'article provenant de la source Math-Net.Ru
We obtain some necessary and sufficient conditions for the well-posednes of a convolution equations on a finite interval and of a system of Cauchy-type singular integral equations.
Keywords:
integral equation, system, well-posedness, Riemann problem, Cauchy-type singular integral equation.
Mots-clés : convolution
Mots-clés : convolution
@article{SEMR_2008_5_a40,
author = {A. F. Voronin},
title = {The well-posednes of a~convolution equations on a~finite interval and of a~system of {Cauchy-type} singular integral equations},
journal = {Sibirskie \`elektronnye matemati\v{c}eskie izvesti\^a},
pages = {456--464},
publisher = {mathdoc},
volume = {5},
year = {2008},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/SEMR_2008_5_a40/}
}
TY - JOUR AU - A. F. Voronin TI - The well-posednes of a~convolution equations on a~finite interval and of a~system of Cauchy-type singular integral equations JO - Sibirskie èlektronnye matematičeskie izvestiâ PY - 2008 SP - 456 EP - 464 VL - 5 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/SEMR_2008_5_a40/ LA - ru ID - SEMR_2008_5_a40 ER -
%0 Journal Article %A A. F. Voronin %T The well-posednes of a~convolution equations on a~finite interval and of a~system of Cauchy-type singular integral equations %J Sibirskie èlektronnye matematičeskie izvestiâ %D 2008 %P 456-464 %V 5 %I mathdoc %U http://geodesic.mathdoc.fr/item/SEMR_2008_5_a40/ %G ru %F SEMR_2008_5_a40
A. F. Voronin. The well-posednes of a~convolution equations on a~finite interval and of a~system of Cauchy-type singular integral equations. Sibirskie èlektronnye matematičeskie izvestiâ, Tome 5 (2008), pp. 456-464. http://geodesic.mathdoc.fr/item/SEMR_2008_5_a40/