The well-posednes of a~convolution equations on a~finite interval and of a~system of Cauchy-type singular integral equations
Sibirskie èlektronnye matematičeskie izvestiâ, Tome 5 (2008), pp. 456-464.

Voir la notice de l'article provenant de la source Math-Net.Ru

We obtain some necessary and sufficient conditions for the well-posednes of a convolution equations on a finite interval and of a system of Cauchy-type singular integral equations.
Keywords: integral equation, system, well-posedness, Riemann problem, Cauchy-type singular integral equation.
Mots-clés : convolution
@article{SEMR_2008_5_a40,
     author = {A. F. Voronin},
     title = {The well-posednes of a~convolution equations on a~finite interval and of a~system of {Cauchy-type} singular integral equations},
     journal = {Sibirskie \`elektronnye matemati\v{c}eskie izvesti\^a},
     pages = {456--464},
     publisher = {mathdoc},
     volume = {5},
     year = {2008},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/SEMR_2008_5_a40/}
}
TY  - JOUR
AU  - A. F. Voronin
TI  - The well-posednes of a~convolution equations on a~finite interval and of a~system of Cauchy-type singular integral equations
JO  - Sibirskie èlektronnye matematičeskie izvestiâ
PY  - 2008
SP  - 456
EP  - 464
VL  - 5
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/SEMR_2008_5_a40/
LA  - ru
ID  - SEMR_2008_5_a40
ER  - 
%0 Journal Article
%A A. F. Voronin
%T The well-posednes of a~convolution equations on a~finite interval and of a~system of Cauchy-type singular integral equations
%J Sibirskie èlektronnye matematičeskie izvestiâ
%D 2008
%P 456-464
%V 5
%I mathdoc
%U http://geodesic.mathdoc.fr/item/SEMR_2008_5_a40/
%G ru
%F SEMR_2008_5_a40
A. F. Voronin. The well-posednes of a~convolution equations on a~finite interval and of a~system of Cauchy-type singular integral equations. Sibirskie èlektronnye matematičeskie izvestiâ, Tome 5 (2008), pp. 456-464. http://geodesic.mathdoc.fr/item/SEMR_2008_5_a40/

[1] Voronin A. F., “Polnoe obobschenie metoda Vinera–Khopfa dlya integralnykh uravnenii v svertkakh na konechnom intervale s integriruemymi yadrami”, Dif. uravneniya, 40:9 (2004), 1153–1160 | MR

[2] Voronin A. F., “Integralnoe uravnenie pervogo roda v svertkakh na konechnom intervale s periodicheskim yadrom”, Sib. zhurnal industr. mat-ki, 11:1 (2008), 46–56 | MR

[3] Voronin A. F., “Neobkhodimye i dostatochnye usloviya korrektnosti dlya uravneniya vtorogo roda v svertkakh na konechnom intervale s chetnym yadrom”, Sib. matematich. zhurnal, 49:4 (2008), 136–147 | MR

[4] Voronin A. F., “Usloviya korrektnosti uravneniya vtorogo roda v svertkakh na konechnom intervale s chetnym yadrom”, DAN, 413:5 (2007), 594–595 | MR | Zbl

[5] Voronin A. F., “O korrektnosti kraevoi zadachi Rimana s matrichnym koeffitsientom”, DAN, 414:2 (2007), 156–158 | MR | Zbl

[6] Gakhov F. D., Kraevye zadachi, Nauka, M., 1977 | MR

[7] Gakhov F. D., Cherskii Yu. I., Uravneniya tipa svertki, Nauka, M., 1978 | MR | Zbl

[8] Krein M. G., “Integralnye uravneniya na polupryamoi s yadrom, zavisyaschim ot raznosti argumentov”, Uspekhi mat. nauk, 13:5(83) (1958), 3–120 | MR

[9] Voronin A. F., “Uravneniya v svertkakh na polupryamoi s vyrozhdayuschimisya na intervale simvolami”, Differentsialnye uravneniya, 36:4 (2000), 555–557 | MR | Zbl

[10] Ganin M. P., “Ob odnom integralnom uravnenii Fredgolma s yadrom, zavisyaschem ot raznosti argumentov”, Izv. vuzov. Matematika, 2 (1963), 31–43 | MR | Zbl

[11] Muskhelishvili N. I., Singulyarnye integralnye uravneniya, Nauka, M., 1968 | MR

[12] Litvinchuk G. S., Kraevye zadachi i singulyarnye integralnye uravneniya so sdvigom, Nauka, M., 1986 | MR

[13] Vasileva A. B., Tikhonov N. A., Integralnye uravneniya, Fizmatlit, M., 2004

[14] Voronin A. F., “Teorema edinstvennosti dlya uravneniya 1-go roda v svertkakh na otrezke s differentsiruemym yadrom”, Differents. uravneniya, 37:10 (2001), 1342–1349 | MR | Zbl

[15] Voronin A. F., “Odin klass uravnenii vtorogo roda v svertkakh na otrezke”, Differents. uravneniya, 36:10 (2000), 1377–1364 | MR

[16] Kantorovich L. V., Akilov G. P., Funktsionalnyi analiz, Nauka, M., 1984 | MR | Zbl

[17] Voronin A. F., “Teoremy edinstvennosti dlya integralnykh uravnenii v svertkakh 1-go i 2-go rodov na otrezke”, DAN, 396:1 (2004), 12–14 | MR | Zbl

[18] Ershov Yu. I., Shikhov S. B., Metody resheniya kraevykh zadach teorii perenosa, Atomizdat, M., 1977 | MR

[19] Voronin A. F., “Usilenie alternativy Fredgolma dlya integralnykh uravnenii v svertkakh”, DAN, 387:6 (2002), 737–738 | MR | Zbl

[20] Shabat A. B., “Obratnaya zadacha rasseyaniya”, Differents. uravneniya, 15:10 (1979), 1824–1834 | MR | Zbl

[21] Presman E. L., “Metody faktorizatsii i granichnaya zadacha dlya summ sluchainykh velichin, zadannykh na tsepi Markova”, Izv. Akad. nauk SSSR, ser. matem., 33:4 (1969), 70–81 | MR

[22] Muskhelishvili N. I., Vekua N. P., “Kraevaya zadacha Rimana dlya neskolkikh neizvestnykh funktsii”, Trudy Tb. matematicheskogo in-ta, 12, 1943, 1–46

[23] Gokhberg I. Ts., Krein M. G., “Sistemy integralnykh uravnenii na polupryamoi s yadrami, zavisyaschimi ot raznosti argumentov”, Uspekhi mat. nauk, 13:2(80) (1958), 3–72 | MR