The well-posednes of a~convolution equations on a~finite interval and of a~system of Cauchy-type singular integral equations
Sibirskie èlektronnye matematičeskie izvestiâ, Tome 5 (2008), pp. 456-464

Voir la notice de l'article provenant de la source Math-Net.Ru

We obtain some necessary and sufficient conditions for the well-posednes of a convolution equations on a finite interval and of a system of Cauchy-type singular integral equations.
Keywords: integral equation, system, well-posedness, Riemann problem, Cauchy-type singular integral equation.
Mots-clés : convolution
@article{SEMR_2008_5_a40,
     author = {A. F. Voronin},
     title = {The well-posednes of a~convolution equations on a~finite interval and of a~system of {Cauchy-type} singular integral equations},
     journal = {Sibirskie \`elektronnye matemati\v{c}eskie izvesti\^a},
     pages = {456--464},
     publisher = {mathdoc},
     volume = {5},
     year = {2008},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/SEMR_2008_5_a40/}
}
TY  - JOUR
AU  - A. F. Voronin
TI  - The well-posednes of a~convolution equations on a~finite interval and of a~system of Cauchy-type singular integral equations
JO  - Sibirskie èlektronnye matematičeskie izvestiâ
PY  - 2008
SP  - 456
EP  - 464
VL  - 5
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/SEMR_2008_5_a40/
LA  - ru
ID  - SEMR_2008_5_a40
ER  - 
%0 Journal Article
%A A. F. Voronin
%T The well-posednes of a~convolution equations on a~finite interval and of a~system of Cauchy-type singular integral equations
%J Sibirskie èlektronnye matematičeskie izvestiâ
%D 2008
%P 456-464
%V 5
%I mathdoc
%U http://geodesic.mathdoc.fr/item/SEMR_2008_5_a40/
%G ru
%F SEMR_2008_5_a40
A. F. Voronin. The well-posednes of a~convolution equations on a~finite interval and of a~system of Cauchy-type singular integral equations. Sibirskie èlektronnye matematičeskie izvestiâ, Tome 5 (2008), pp. 456-464. http://geodesic.mathdoc.fr/item/SEMR_2008_5_a40/