Monotone integrals and stability of autonomous systems
Sibirskie èlektronnye matematičeskie izvestiâ, Tome 5 (2008), pp. 351-354
Cet article a éte moissonné depuis la source Math-Net.Ru
We define the monotone functions of several real variables as well as describe the admissible operations over those and study their geometric structure. The suggested applications of our results to the stability theory of multidimensional dynamical systems are provided.
Keywords:
monotone functions of several variables, first integrals and Lyapunov's functions of vector fields, Hamiltonian systems.
@article{SEMR_2008_5_a36,
author = {V. V. Ivanov and V. M. Cheresiz},
title = {Monotone integrals and stability of autonomous systems},
journal = {Sibirskie \`elektronnye matemati\v{c}eskie izvesti\^a},
pages = {351--354},
year = {2008},
volume = {5},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/SEMR_2008_5_a36/}
}
V. V. Ivanov; V. M. Cheresiz. Monotone integrals and stability of autonomous systems. Sibirskie èlektronnye matematičeskie izvestiâ, Tome 5 (2008), pp. 351-354. http://geodesic.mathdoc.fr/item/SEMR_2008_5_a36/
[1] Browder F., Bull. Amer. Math. Soc., 69 (1963), 858–861 | DOI | MR | Zbl
[2] Minty G. J., Proc. Nat. Acad. Sci. USA, 50 (1963), 1038–1041 | DOI | MR | Zbl
[3] Cheresiz V. M., “O pochti-periodicheskikh resheniyakh nelineinykh sistem”, DAN SSSR, 165:2 (1965), 281–284
[4] Morse M., Cairns S., Critical Point Theory in Global Analysis and Differential Topology. An introduction, Academic press, New York, London, 1969 | MR | Zbl
[5] Barbashin E. A., Krasovskii N. N., “Ob ustoichivosti dvizheniya v tselom”, DAN SSSR, 86:3 (1952), 453–456 | Zbl