Monotone curvature indicatrices of complete surfaces of revolution
Sibirskie èlektronnye matematičeskie izvestiâ, Tome 5 (2008), pp. 279-282.

Voir la notice de l'article provenant de la source Math-Net.Ru

A complete classification of bijective relations between principal curvatures of $C^2$ surfaces of revolution is given.
Keywords: surfaces of revolution, curvature indicatrix.
@article{SEMR_2008_5_a35,
     author = {V. V. Ivanov},
     title = {Monotone curvature indicatrices of complete surfaces of revolution},
     journal = {Sibirskie \`elektronnye matemati\v{c}eskie izvesti\^a},
     pages = {279--282},
     publisher = {mathdoc},
     volume = {5},
     year = {2008},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/SEMR_2008_5_a35/}
}
TY  - JOUR
AU  - V. V. Ivanov
TI  - Monotone curvature indicatrices of complete surfaces of revolution
JO  - Sibirskie èlektronnye matematičeskie izvestiâ
PY  - 2008
SP  - 279
EP  - 282
VL  - 5
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/SEMR_2008_5_a35/
LA  - ru
ID  - SEMR_2008_5_a35
ER  - 
%0 Journal Article
%A V. V. Ivanov
%T Monotone curvature indicatrices of complete surfaces of revolution
%J Sibirskie èlektronnye matematičeskie izvestiâ
%D 2008
%P 279-282
%V 5
%I mathdoc
%U http://geodesic.mathdoc.fr/item/SEMR_2008_5_a35/
%G ru
%F SEMR_2008_5_a35
V. V. Ivanov. Monotone curvature indicatrices of complete surfaces of revolution. Sibirskie èlektronnye matematičeskie izvestiâ, Tome 5 (2008), pp. 279-282. http://geodesic.mathdoc.fr/item/SEMR_2008_5_a35/

[1] V. Blyashke, Differentsialnaya geometriya i geometricheskie osnovy teorii otnositelnosti Einshteina, v. I, Elementarnaya differentsialnaya geometiya, ONTI NKTP SSSR, Glavnaya redaktsiya obschetekhnicheskoi literatury i nomografii, M., L., 1935

[2] V. A. Toponogov, “Teorema edinstvennosti dlya poverkhnosti, u kotoroi glavnye krivizny svyazany sootnosheniem $(1-k_1d)(1-k_2d)=-1$”, Sib. mat. zhurn., 36:4 (1995), 903–910 | MR | Zbl