About periodic solutions of predator-prey system
Sibirskie èlektronnye matematičeskie izvestiâ, Tome 5 (2008), pp. 251-254.

Voir la notice de l'article provenant de la source Math-Net.Ru

A predator-prey model of a special type is considered. It is shown that the model has a phase portrait with two limit cycles enclosing a hyperbolic equilibrium each for some values of parameters. This result supplements previous results of the authors of the model.
Keywords: predator-prey model
Mots-clés : limit cycles.
@article{SEMR_2008_5_a34,
     author = {E. P. Volokitin and S. A. Treskov},
     title = {About periodic solutions of predator-prey system},
     journal = {Sibirskie \`elektronnye matemati\v{c}eskie izvesti\^a},
     pages = {251--254},
     publisher = {mathdoc},
     volume = {5},
     year = {2008},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/SEMR_2008_5_a34/}
}
TY  - JOUR
AU  - E. P. Volokitin
AU  - S. A. Treskov
TI  - About periodic solutions of predator-prey system
JO  - Sibirskie èlektronnye matematičeskie izvestiâ
PY  - 2008
SP  - 251
EP  - 254
VL  - 5
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/SEMR_2008_5_a34/
LA  - ru
ID  - SEMR_2008_5_a34
ER  - 
%0 Journal Article
%A E. P. Volokitin
%A S. A. Treskov
%T About periodic solutions of predator-prey system
%J Sibirskie èlektronnye matematičeskie izvestiâ
%D 2008
%P 251-254
%V 5
%I mathdoc
%U http://geodesic.mathdoc.fr/item/SEMR_2008_5_a34/
%G ru
%F SEMR_2008_5_a34
E. P. Volokitin; S. A. Treskov. About periodic solutions of predator-prey system. Sibirskie èlektronnye matematičeskie izvestiâ, Tome 5 (2008), pp. 251-254. http://geodesic.mathdoc.fr/item/SEMR_2008_5_a34/

[1] Li Y., Xiao D., “Bifurcanions of a predator-prey system of Holing and Leslie types”, Ghaos, Solitons and Fractals, 34 (2007), 606–620 | DOI | MR | Zbl

[2] Kuznetsov Y. A., Elements of Applied Bifurcation Theory, Springer-Verlag, New York, 1995 | MR

[3] Nemytskii V. V., Stepanov V. V., Kachestvennaya teoriya differentsialnykh uravnenii, Gosudarstvennoe izdatelstvo tekhniko-teoreticheskoi literatury, Moskva, Leningrad, 1949

[4] Volokitin E. P., Treskov S. A., “O lyapunovskikh velichinakh slozhnogo fokusa dinamicheskoi sistemy na ploskosti”, Izvestiya RAEN. Matematika. Matematicheskoe modelirovanie. Informatika i upravlenie, 1:1 (1997), 59–72 | MR | Zbl