About periodic solutions of predator-prey system
Sibirskie èlektronnye matematičeskie izvestiâ, Tome 5 (2008), pp. 251-254
Cet article a éte moissonné depuis la source Math-Net.Ru
A predator-prey model of a special type is considered. It is shown that the model has a phase portrait with two limit cycles enclosing a hyperbolic equilibrium each for some values of parameters. This result supplements previous results of the authors of the model.
Keywords:
predator-prey model
Mots-clés : limit cycles.
Mots-clés : limit cycles.
@article{SEMR_2008_5_a34,
author = {E. P. Volokitin and S. A. Treskov},
title = {About periodic solutions of predator-prey system},
journal = {Sibirskie \`elektronnye matemati\v{c}eskie izvesti\^a},
pages = {251--254},
year = {2008},
volume = {5},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/SEMR_2008_5_a34/}
}
E. P. Volokitin; S. A. Treskov. About periodic solutions of predator-prey system. Sibirskie èlektronnye matematičeskie izvestiâ, Tome 5 (2008), pp. 251-254. http://geodesic.mathdoc.fr/item/SEMR_2008_5_a34/
[1] Li Y., Xiao D., “Bifurcanions of a predator-prey system of Holing and Leslie types”, Ghaos, Solitons and Fractals, 34 (2007), 606–620 | DOI | MR | Zbl
[2] Kuznetsov Y. A., Elements of Applied Bifurcation Theory, Springer-Verlag, New York, 1995 | MR
[3] Nemytskii V. V., Stepanov V. V., Kachestvennaya teoriya differentsialnykh uravnenii, Gosudarstvennoe izdatelstvo tekhniko-teoreticheskoi literatury, Moskva, Leningrad, 1949
[4] Volokitin E. P., Treskov S. A., “O lyapunovskikh velichinakh slozhnogo fokusa dinamicheskoi sistemy na ploskosti”, Izvestiya RAEN. Matematika. Matematicheskoe modelirovanie. Informatika i upravlenie, 1:1 (1997), 59–72 | MR | Zbl