Stable theories of Frechet-powers
Sibirskie èlektronnye matematičeskie izvestiâ, Tome 5 (2008), pp. 699-707.

Voir la notice de l'article provenant de la source Math-Net.Ru

Elementary theories of Frechet-powers $A^F$ of structures $A$ are investigated. We put a special emphasis on the study of such theories under the condition of stability as well as on constructions of their models containing a given sets $X$ which are minimal in the sense that, the dimensions of independent sets represented in $X$ do not increase. The basis results of the paper are the characterization of forking (Theorem 2) and a theorem on preservation of dimension in $\lambda$-positive envelopes (Theorem 3).
Keywords: model theory, elementary theories, stability.
@article{SEMR_2008_5_a33,
     author = {E. A. Palyutin},
     title = {Stable theories of {Frechet-powers}},
     journal = {Sibirskie \`elektronnye matemati\v{c}eskie izvesti\^a},
     pages = {699--707},
     publisher = {mathdoc},
     volume = {5},
     year = {2008},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/SEMR_2008_5_a33/}
}
TY  - JOUR
AU  - E. A. Palyutin
TI  - Stable theories of Frechet-powers
JO  - Sibirskie èlektronnye matematičeskie izvestiâ
PY  - 2008
SP  - 699
EP  - 707
VL  - 5
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/SEMR_2008_5_a33/
LA  - ru
ID  - SEMR_2008_5_a33
ER  - 
%0 Journal Article
%A E. A. Palyutin
%T Stable theories of Frechet-powers
%J Sibirskie èlektronnye matematičeskie izvestiâ
%D 2008
%P 699-707
%V 5
%I mathdoc
%U http://geodesic.mathdoc.fr/item/SEMR_2008_5_a33/
%G ru
%F SEMR_2008_5_a33
E. A. Palyutin. Stable theories of Frechet-powers. Sibirskie èlektronnye matematičeskie izvestiâ, Tome 5 (2008), pp. 699-707. http://geodesic.mathdoc.fr/item/SEMR_2008_5_a33/

[1] S. Shelah, Classification theory and the number of non-isomorphic models, North-Holland, Amsterdam, 1978 | MR | Zbl

[2] E. A. Palyutin, “Kategorichnye khornovy klassy. 1”, Algebra i logika, 19:5 (1980), 582–614 | MR | Zbl

[3] E. A. Palyutin, “Primitivno svyaznye teorii”, Algebra i logika, 39:2 (2000), 145–169 | MR | Zbl

[4] E. A. Palyutin, “Eliminatsiya kvantorov v Freshe-zamknutykh klassakh bez interpretatsii grafov”, Trudy Mezhdunarodnoi nauchnoi konferentsii “Sovremennye problemy matematiki, informatiki i upravleniya” (Almaty, 2008), 469–469

[5] M. Ziegler, “Model theory of modules”, Ann. Pure and Appl. Logic, 26 (1984), 149–213 | DOI | MR | Zbl

[6] E. A. Palyutin, “Eliminatsiya kvantorov dlya kommutativnykh teorii”, Doklady RAN, 363:3 (1998), 301–303 | MR | Zbl

[7] Palyutin E. A., “Commutative theories”, The Bulletin of Symb. Log., 5:1 (1999), 65–66

[8] Palyutin E. A., Starchenko S. S., “Horn theories with nonmaximal spectrum”, Model theory and applications, Amer. Math. Soc. Transl. (2), 195, 1999, 225–284 | MR