Voir la notice de l'article provenant de la source Math-Net.Ru
@article{SEMR_2008_5_a3, author = {A. M. Staroletov}, title = {Insolubility of finite groups which are isospectral to the alternating group of degree~$10$}, journal = {Sibirskie \`elektronnye matemati\v{c}eskie izvesti\^a}, pages = {20--24}, publisher = {mathdoc}, volume = {5}, year = {2008}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/SEMR_2008_5_a3/} }
TY - JOUR AU - A. M. Staroletov TI - Insolubility of finite groups which are isospectral to the alternating group of degree~$10$ JO - Sibirskie èlektronnye matematičeskie izvestiâ PY - 2008 SP - 20 EP - 24 VL - 5 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/SEMR_2008_5_a3/ LA - ru ID - SEMR_2008_5_a3 ER -
A. M. Staroletov. Insolubility of finite groups which are isospectral to the alternating group of degree~$10$. Sibirskie èlektronnye matematičeskie izvestiâ, Tome 5 (2008), pp. 20-24. http://geodesic.mathdoc.fr/item/SEMR_2008_5_a3/
[1] Lucido M. S., Moghaddamfar A. R., “Groups with complete prime graph connected components”, J. Group Theory, 7:3 (2004), 373–384 | DOI | MR | Zbl
[2] Aleeva M. R., “O konechnykh prostykh gruppakh s mnozhestvom poryadkov elementov kak u gruppy Frobeniusa ili dvoinoi gruppy Frobeniusa”, Matem. zametki, 73:3 (2003), 323–339 | MR | Zbl
[3] Mazurov V. D., “Gruppy s zadannym spektrom”, Izvestiya Uralskogo gosudarstvennogo universiteta, Matematika i mekhanika, 36:7 (2005), 119–138 | MR | Zbl
[4] Williams J. S., “Prime graph components of finite groups”, J. Algebra, 69:2 (1981), 487–513 | DOI | MR | Zbl
[5] Gorenstein D., Finite Groups, 2nd ed., Chelsea, New York, 1980 | MR | Zbl
[6] Zavarnitsin A. V., Mazurov V. D., “O poryadkakh elementov v nakrytiyakh simmetricheskikh i znakoperemenykh grupp”, Algebra i logika, 38:3 (1999), 296–315 ; 567–585 | MR
[7] Kargapolov M. I., Merzlyakov Yu. I., Osnovy teorii grupp, 4-e izd., pererab., Nauka. Fizmatlit, M., 1996, 288 pp. | MR | Zbl