The decomposition theorem and ranks of central unit groups of integer group rings of groups $PGL_2(q)$, $q$ odd
Sibirskie èlektronnye matematičeskie izvestiâ, Tome 5 (2008), pp. 652-672

Voir la notice de l'article provenant de la source Math-Net.Ru

We study central unit groups of integer group rings of groups $PGL_2(q)$, $q$ odd, prove the decomposition theorem, and find the ranks of those groups.
Keywords: group characters, central units, group rings.
@article{SEMR_2008_5_a29,
     author = {R. Zh. Aleev and O. V. Mitina},
     title = {The decomposition theorem and ranks of central unit groups of integer group rings of groups  $PGL_2(q)$, $q$ odd},
     journal = {Sibirskie \`elektronnye matemati\v{c}eskie izvesti\^a},
     pages = {652--672},
     publisher = {mathdoc},
     volume = {5},
     year = {2008},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/SEMR_2008_5_a29/}
}
TY  - JOUR
AU  - R. Zh. Aleev
AU  - O. V. Mitina
TI  - The decomposition theorem and ranks of central unit groups of integer group rings of groups  $PGL_2(q)$, $q$ odd
JO  - Sibirskie èlektronnye matematičeskie izvestiâ
PY  - 2008
SP  - 652
EP  - 672
VL  - 5
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/SEMR_2008_5_a29/
LA  - ru
ID  - SEMR_2008_5_a29
ER  - 
%0 Journal Article
%A R. Zh. Aleev
%A O. V. Mitina
%T The decomposition theorem and ranks of central unit groups of integer group rings of groups  $PGL_2(q)$, $q$ odd
%J Sibirskie èlektronnye matematičeskie izvestiâ
%D 2008
%P 652-672
%V 5
%I mathdoc
%U http://geodesic.mathdoc.fr/item/SEMR_2008_5_a29/
%G ru
%F SEMR_2008_5_a29
R. Zh. Aleev; O. V. Mitina. The decomposition theorem and ranks of central unit groups of integer group rings of groups  $PGL_2(q)$, $q$ odd. Sibirskie èlektronnye matematičeskie izvestiâ, Tome 5 (2008), pp. 652-672. http://geodesic.mathdoc.fr/item/SEMR_2008_5_a29/