Voir la notice de l'article provenant de la source Math-Net.Ru
@article{SEMR_2008_5_a29, author = {R. Zh. Aleev and O. V. Mitina}, title = {The decomposition theorem and ranks of central unit groups of integer group rings of groups $PGL_2(q)$, $q$ odd}, journal = {Sibirskie \`elektronnye matemati\v{c}eskie izvesti\^a}, pages = {652--672}, publisher = {mathdoc}, volume = {5}, year = {2008}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/SEMR_2008_5_a29/} }
TY - JOUR AU - R. Zh. Aleev AU - O. V. Mitina TI - The decomposition theorem and ranks of central unit groups of integer group rings of groups $PGL_2(q)$, $q$ odd JO - Sibirskie èlektronnye matematičeskie izvestiâ PY - 2008 SP - 652 EP - 672 VL - 5 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/SEMR_2008_5_a29/ LA - ru ID - SEMR_2008_5_a29 ER -
%0 Journal Article %A R. Zh. Aleev %A O. V. Mitina %T The decomposition theorem and ranks of central unit groups of integer group rings of groups $PGL_2(q)$, $q$ odd %J Sibirskie èlektronnye matematičeskie izvestiâ %D 2008 %P 652-672 %V 5 %I mathdoc %U http://geodesic.mathdoc.fr/item/SEMR_2008_5_a29/ %G ru %F SEMR_2008_5_a29
R. Zh. Aleev; O. V. Mitina. The decomposition theorem and ranks of central unit groups of integer group rings of groups $PGL_2(q)$, $q$ odd. Sibirskie èlektronnye matematičeskie izvestiâ, Tome 5 (2008), pp. 652-672. http://geodesic.mathdoc.fr/item/SEMR_2008_5_a29/