On complete interpolation spline finding via $B$-splines
Sibirskie èlektronnye matematičeskie izvestiâ, Tome 5 (2008), pp. 334-338
Cet article a éte moissonné depuis la source Math-Net.Ru
We discuss a problem of interpolation by a complete spline of $2n-1$ degree given in $B$-spline representation. It is shown that the first $n$ and the last $n$ coefficients of $B$-spline decomposition are under explicit formulas and other coefficients can be found as a solution of a banded system of an equitype linear equations.
Keywords:
complete spline, $B$-splines.
Mots-clés : interpolation
Mots-clés : interpolation
@article{SEMR_2008_5_a22,
author = {Yu. S. Volkov},
title = {On complete interpolation spline finding via $B$-splines},
journal = {Sibirskie \`elektronnye matemati\v{c}eskie izvesti\^a},
pages = {334--338},
year = {2008},
volume = {5},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/SEMR_2008_5_a22/}
}
Yu. S. Volkov. On complete interpolation spline finding via $B$-splines. Sibirskie èlektronnye matematičeskie izvestiâ, Tome 5 (2008), pp. 334-338. http://geodesic.mathdoc.fr/item/SEMR_2008_5_a22/
[1] Yu. S. Zavyalov, B. I. Kvasov, V. L. Miroshnichenko, Metody splain-funktsii, Nauka, Moskva, 1980 | MR | Zbl
[2] L. L. Schumaker, Spline Functions: Basic Theory, Wiley, New York, 1981 | MR | Zbl
[3] Yu. S. Volkov, “Vpolne neotritsatelnye matritsy v metodakh postroeniya interpolyatsionnykh splainov nechetnoi stepeni”, Matematicheskie trudy, 7:2 (2004), 3–34 | MR