Voir la notice de l'article provenant de la source Math-Net.Ru
@article{SEMR_2008_5_a18, author = {A. I. Golod and A. P. Chupakhin}, title = {Invariant solution of dynamics of polytropic gas generated by three-dimensional algebras of symmetry}, journal = {Sibirskie \`elektronnye matemati\v{c}eskie izvesti\^a}, pages = {229--250}, publisher = {mathdoc}, volume = {5}, year = {2008}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/SEMR_2008_5_a18/} }
TY - JOUR AU - A. I. Golod AU - A. P. Chupakhin TI - Invariant solution of dynamics of polytropic gas generated by three-dimensional algebras of symmetry JO - Sibirskie èlektronnye matematičeskie izvestiâ PY - 2008 SP - 229 EP - 250 VL - 5 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/SEMR_2008_5_a18/ LA - ru ID - SEMR_2008_5_a18 ER -
%0 Journal Article %A A. I. Golod %A A. P. Chupakhin %T Invariant solution of dynamics of polytropic gas generated by three-dimensional algebras of symmetry %J Sibirskie èlektronnye matematičeskie izvestiâ %D 2008 %P 229-250 %V 5 %I mathdoc %U http://geodesic.mathdoc.fr/item/SEMR_2008_5_a18/ %G ru %F SEMR_2008_5_a18
A. I. Golod; A. P. Chupakhin. Invariant solution of dynamics of polytropic gas generated by three-dimensional algebras of symmetry. Sibirskie èlektronnye matematičeskie izvestiâ, Tome 5 (2008), pp. 229-250. http://geodesic.mathdoc.fr/item/SEMR_2008_5_a18/
[1] L. V. Ovsyannikov, “Programma PODMODELI. Gazovaya dinamika”, Prikladnaya matematika i mekhanika, 58:4 (1994), 30–55 | MR | Zbl
[2] A. P. Chupakhin, Barokhronnye dvizheniya gaza: obschie svoistva i podmodeli tipov (1,2) i (1,1), Prepr. / SO RAN, In-t gidrodinamiki; No 4-98, Novosibirsk, 1998
[3] L. V. Ovsyannikov, “O periodicheskikh dvizheniyakh gaza”, PMM, 65:4 (2001), 567–577 | MR | Zbl
[4] L. V. Ovsyannikov, “Osobyi vikhr”, PMTF, 36:3 (1995), 45–52 | MR | Zbl
[5] A. A. Cherevko, A. P. Chupakhin, Statsionarnyi vikhr Ovsyannikova, Prepr./ SO RAN, In-t gidrodinamiki, No 1-2005, Novosibirsk, 2005
[6] L. V. Ovsyannikov, “O “prostykh” resheniyakh uravnenii dinamiki politropnogo gaza”, PMTF, 40:2 (1999) | Zbl
[7] L. V. Ovsyannikov, Gruppovoi analiz differentsialnykh uravnenii, Nauka, M., 1978, 400 pp. | MR
[8] L. V. Ovsyannikov, “Ob ierarkhii invariantnykh podmodelei differentsialnykh uravnenii”, Dokl. RAN, 361:6 (1998), 740–742 | MR | Zbl
[9] L. V. Ovsyannikov, Gruppovye svoistva differentsialnykh uravnenii, Izdatelstvo SO AN SSSR, Novosibirsk, 1962, 239 pp. | MR
[10] S. V. Golovin, Optimalnaya sistema podalgebr dlya algebry Li operatorov dopuskaemykh uravneniyami gazovoi dinamiki v sluchae politropnogo gaza, Prepr. / SO RAN, In-t gidrodinamiki, No 5-96, Novosibirsk, 1996
[11] A. A. Cherevko, “Teoretiko-gruppovye resheniya uravnenii gazovoi dinamiki, porozhdennye trekhmernymi podalgebrami simmetrii”, Tez. Mezhd. Konf. Differentsialnye uravneniya, teoriya funktsii i prilozheniya posvyaschennoi 100-letiyu so dnya rozhdeniya I. N. Vekua (Novosibirsk, 28 maya–2 iyunya 2007), NGU, 2007, 353
[12] A. P. Chupakhin, Nebarokhronnye podmodeli tipov (1,2) i (1,1) uravnenii gazovoi dinamiki, Prepr. / SO RAN, In-t gidrodinamiki; No 1-99, Novosibirsk, 1999
[13] V. I. Arnold, Geometricheskie metody v teorii obyknovennykh differentsialnykh uravnenii, Izd-vo Udmurtskogo gos. un-ta, Izhevsk, 2000
[14] L. I. Sedov, Metody podobiya i razmernosti v mekhanike, Nauka, M., 1981 | MR | Zbl
[15] A. F. Sidorov, Izbrannye trudy. Matematika. Mekhanika, Fizmatlit., M., 2001 | MR