Invariant solution of dynamics of polytropic gas generated by three-dimensional algebras of symmetry
Sibirskie èlektronnye matematičeskie izvestiâ, Tome 5 (2008), pp. 229-250.

Voir la notice de l'article provenant de la source Math-Net.Ru

We consider group-theoretical solution of equations of politropic gas generated by three-dimentional algebras Lie of symmetry. We observe the 37 invariant submodels admitting algebras with large normalizer. The factor systems of these submodels can be integrated.
Keywords: dynamics of polytropic gas, algebra of symmetry.
Mots-clés : invariant solution
@article{SEMR_2008_5_a18,
     author = {A. I. Golod and A. P. Chupakhin},
     title = {Invariant solution of dynamics of polytropic gas generated by three-dimensional algebras of symmetry},
     journal = {Sibirskie \`elektronnye matemati\v{c}eskie izvesti\^a},
     pages = {229--250},
     publisher = {mathdoc},
     volume = {5},
     year = {2008},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/SEMR_2008_5_a18/}
}
TY  - JOUR
AU  - A. I. Golod
AU  - A. P. Chupakhin
TI  - Invariant solution of dynamics of polytropic gas generated by three-dimensional algebras of symmetry
JO  - Sibirskie èlektronnye matematičeskie izvestiâ
PY  - 2008
SP  - 229
EP  - 250
VL  - 5
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/SEMR_2008_5_a18/
LA  - ru
ID  - SEMR_2008_5_a18
ER  - 
%0 Journal Article
%A A. I. Golod
%A A. P. Chupakhin
%T Invariant solution of dynamics of polytropic gas generated by three-dimensional algebras of symmetry
%J Sibirskie èlektronnye matematičeskie izvestiâ
%D 2008
%P 229-250
%V 5
%I mathdoc
%U http://geodesic.mathdoc.fr/item/SEMR_2008_5_a18/
%G ru
%F SEMR_2008_5_a18
A. I. Golod; A. P. Chupakhin. Invariant solution of dynamics of polytropic gas generated by three-dimensional algebras of symmetry. Sibirskie èlektronnye matematičeskie izvestiâ, Tome 5 (2008), pp. 229-250. http://geodesic.mathdoc.fr/item/SEMR_2008_5_a18/

[1] L. V. Ovsyannikov, “Programma PODMODELI. Gazovaya dinamika”, Prikladnaya matematika i mekhanika, 58:4 (1994), 30–55 | MR | Zbl

[2] A. P. Chupakhin, Barokhronnye dvizheniya gaza: obschie svoistva i podmodeli tipov (1,2) i (1,1), Prepr. / SO RAN, In-t gidrodinamiki; No 4-98, Novosibirsk, 1998

[3] L. V. Ovsyannikov, “O periodicheskikh dvizheniyakh gaza”, PMM, 65:4 (2001), 567–577 | MR | Zbl

[4] L. V. Ovsyannikov, “Osobyi vikhr”, PMTF, 36:3 (1995), 45–52 | MR | Zbl

[5] A. A. Cherevko, A. P. Chupakhin, Statsionarnyi vikhr Ovsyannikova, Prepr./ SO RAN, In-t gidrodinamiki, No 1-2005, Novosibirsk, 2005

[6] L. V. Ovsyannikov, “O “prostykh” resheniyakh uravnenii dinamiki politropnogo gaza”, PMTF, 40:2 (1999) | Zbl

[7] L. V. Ovsyannikov, Gruppovoi analiz differentsialnykh uravnenii, Nauka, M., 1978, 400 pp. | MR

[8] L. V. Ovsyannikov, “Ob ierarkhii invariantnykh podmodelei differentsialnykh uravnenii”, Dokl. RAN, 361:6 (1998), 740–742 | MR | Zbl

[9] L. V. Ovsyannikov, Gruppovye svoistva differentsialnykh uravnenii, Izdatelstvo SO AN SSSR, Novosibirsk, 1962, 239 pp. | MR

[10] S. V. Golovin, Optimalnaya sistema podalgebr dlya algebry Li operatorov dopuskaemykh uravneniyami gazovoi dinamiki v sluchae politropnogo gaza, Prepr. / SO RAN, In-t gidrodinamiki, No 5-96, Novosibirsk, 1996

[11] A. A. Cherevko, “Teoretiko-gruppovye resheniya uravnenii gazovoi dinamiki, porozhdennye trekhmernymi podalgebrami simmetrii”, Tez. Mezhd. Konf. Differentsialnye uravneniya, teoriya funktsii i prilozheniya posvyaschennoi 100-letiyu so dnya rozhdeniya I. N. Vekua (Novosibirsk, 28 maya–2 iyunya 2007), NGU, 2007, 353

[12] A. P. Chupakhin, Nebarokhronnye podmodeli tipov (1,2) i (1,1) uravnenii gazovoi dinamiki, Prepr. / SO RAN, In-t gidrodinamiki; No 1-99, Novosibirsk, 1999

[13] V. I. Arnold, Geometricheskie metody v teorii obyknovennykh differentsialnykh uravnenii, Izd-vo Udmurtskogo gos. un-ta, Izhevsk, 2000

[14] L. I. Sedov, Metody podobiya i razmernosti v mekhanike, Nauka, M., 1981 | MR | Zbl

[15] A. F. Sidorov, Izbrannye trudy. Matematika. Mekhanika, Fizmatlit., M., 2001 | MR