Some characterizations of cosmic-spaces
Sibirskie èlektronnye matematičeskie izvestiâ, Tome 5 (2008), pp. 189-192.

Voir la notice de l'article provenant de la source Math-Net.Ru

In this paper, we prove that a space $X$ is a cosmic space if and only if it has a $\sigma$-strong network consisting of countable covers of $X$, which give a new characterization of cosmic-spaces.
Keywords: cosmic space, separable metric space.
@article{SEMR_2008_5_a13,
     author = {X. Ge},
     title = {Some characterizations of cosmic-spaces},
     journal = {Sibirskie \`elektronnye matemati\v{c}eskie izvesti\^a},
     pages = {189--192},
     publisher = {mathdoc},
     volume = {5},
     year = {2008},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SEMR_2008_5_a13/}
}
TY  - JOUR
AU  - X. Ge
TI  - Some characterizations of cosmic-spaces
JO  - Sibirskie èlektronnye matematičeskie izvestiâ
PY  - 2008
SP  - 189
EP  - 192
VL  - 5
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/SEMR_2008_5_a13/
LA  - en
ID  - SEMR_2008_5_a13
ER  - 
%0 Journal Article
%A X. Ge
%T Some characterizations of cosmic-spaces
%J Sibirskie èlektronnye matematičeskie izvestiâ
%D 2008
%P 189-192
%V 5
%I mathdoc
%U http://geodesic.mathdoc.fr/item/SEMR_2008_5_a13/
%G en
%F SEMR_2008_5_a13
X. Ge. Some characterizations of cosmic-spaces. Sibirskie èlektronnye matematičeskie izvestiâ, Tome 5 (2008), pp. 189-192. http://geodesic.mathdoc.fr/item/SEMR_2008_5_a13/

[1] A. V. Arhangel'skii, “On a class of spaces containing all metric spaces and all bicompact spaces”, Dokl. Akad. Nauk. SSSR., 151 (1963), 751–754 | MR

[2] Y. Ge, “Spaces with countable sn-networks”, Comment Math. Univ. Carolinae, 45 (2004), 169–176 | MR | Zbl

[3] Y. Ge, “$\aleph_0$-spaces and images of separable metric spaces”, Siberian Electronic Mathematical Reports, 2 (2005), 62–67 | MR

[4] Y. Ikeda, C. Liu and Y. Tanaka, “Quotient compact images of metric spaces, and related matters”, Topology Appl., 122 (2002), 237–252 | DOI | MR | Zbl

[5] E. Michael, “$\aleph_0$-spaces”, J. Math. Mech., 15 (1966), 983–1002 | MR | Zbl

[6] V. I. Ponomarev, “Axiom of countability and continuous mappings”, Bull Pol. Acad Math., 8 (1960), 127–133 | MR

[7] Y. Tanaka and Y. Ge, “Around quotient compact images of metric spaces, and symmetric spaces”, Houston J. Math., 32 (2006), 99–117 | MR | Zbl