Voir la notice de l'article provenant de la source Math-Net.Ru
@article{SEMR_2008_5_a10, author = {K. V. Kostousov}, title = {Cayley graphs of groups $\mathbb Z^4$, $\mathbb Z^5$ and $\mathbb Z^6$ which are limit graphs for the finite graphs of minimal valency for vertex-primitive groups of automorphisms}, journal = {Sibirskie \`elektronnye matemati\v{c}eskie izvesti\^a}, pages = {88--150}, publisher = {mathdoc}, volume = {5}, year = {2008}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/SEMR_2008_5_a10/} }
TY - JOUR AU - K. V. Kostousov TI - Cayley graphs of groups $\mathbb Z^4$, $\mathbb Z^5$ and $\mathbb Z^6$ which are limit graphs for the finite graphs of minimal valency for vertex-primitive groups of automorphisms JO - Sibirskie èlektronnye matematičeskie izvestiâ PY - 2008 SP - 88 EP - 150 VL - 5 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/SEMR_2008_5_a10/ LA - ru ID - SEMR_2008_5_a10 ER -
%0 Journal Article %A K. V. Kostousov %T Cayley graphs of groups $\mathbb Z^4$, $\mathbb Z^5$ and $\mathbb Z^6$ which are limit graphs for the finite graphs of minimal valency for vertex-primitive groups of automorphisms %J Sibirskie èlektronnye matematičeskie izvestiâ %D 2008 %P 88-150 %V 5 %I mathdoc %U http://geodesic.mathdoc.fr/item/SEMR_2008_5_a10/ %G ru %F SEMR_2008_5_a10
K. V. Kostousov. Cayley graphs of groups $\mathbb Z^4$, $\mathbb Z^5$ and $\mathbb Z^6$ which are limit graphs for the finite graphs of minimal valency for vertex-primitive groups of automorphisms. Sibirskie èlektronnye matematičeskie izvestiâ, Tome 5 (2008), pp. 88-150. http://geodesic.mathdoc.fr/item/SEMR_2008_5_a10/
[1] M. Giudici, C. H. Li, C. E. Praeger, A. Seress, V. Trofimov, “On limit graphs of finite vertex-primitive graphs”, J. Comb. Theory. Ser. A, 114 (2007), 110–134 | DOI | MR | Zbl
[2] Kostousov K. V., “Grafy Keli gruppy $\mathbb Z^d$ i predely vershinno-primitivnykh grafov $HA$-tipa”, Sib. mat. zhurnal, 48:3 (2007), 606–620 | MR | Zbl
[3] Kostousov K. V., “O grafakh Keli gruppy $\mathbb Z^4$, yavlyayuschikhsya predelnymi dlya mnozhestva minimalnykh vershinno-primitivnykh grafov $HA$-tipa”, Trudy IMM UrO RAN, 13, no. 1, 2007, 132–147 | MR
[4] The GAP Group. GAP – Groups, Algorithms, and Programming, Version 4.4, Aachen, St Andrews, , 2004 http://www.gap-system.org
[5] J. Opgenorth, W. Plesken, T. Schultz, “Crystallographic Algorithms and Tables”, Acta Cryst A, 54 (1998), 517–531 | DOI | MR | Zbl
[6] CARAT – Crystallographic AlgoRithms And Tables. Version 2.0, http://wwwb.math.rwth-aachen.de/ carat/
[7] Maple – comprehensive computer system for advanced mathematics, Version 8, http://www.maplesoft.com