Cayley graphs of groups $\mathbb Z^4$, $\mathbb Z^5$ and $\mathbb Z^6$ which are limit graphs for the finite graphs of minimal valency for vertex-primitive groups of automorphisms
Sibirskie èlektronnye matematičeskie izvestiâ, Tome 5 (2008), pp. 88-150.

Voir la notice de l'article provenant de la source Math-Net.Ru

Infinite connected graph $\Gamma$ is called a limit graph for the set $X$ of finite vertex-primitive graphs, if each ball of $\Gamma$ is isomorphic to a ball of some graph in $X$. A finite graph $\Gamma$ is called a graph of minimal degree for a vertex-primitive group $G\le\operatorname{Aut}(\Gamma)$, if the condition $\deg(\Gamma)\le\deg(\Delta)$ is hold for any graph $\Delta$ such that $V(\Delta)=V(\Gamma)$ and $G\le\operatorname{Aut}(\Delta)$. It is obtained the description of Cayley graphs of groups $\mathbb Z^4$, $\mathbb Z^5$ and $\mathbb Z^6$ which are limit graphs for the finite graphs of minimal degree for vertex-primitive groups of automorphisms.
@article{SEMR_2008_5_a10,
     author = {K. V. Kostousov},
     title = {Cayley graphs of groups $\mathbb Z^4$, $\mathbb Z^5$ and $\mathbb Z^6$ which are limit graphs for the finite graphs of minimal valency for vertex-primitive groups of automorphisms},
     journal = {Sibirskie \`elektronnye matemati\v{c}eskie izvesti\^a},
     pages = {88--150},
     publisher = {mathdoc},
     volume = {5},
     year = {2008},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/SEMR_2008_5_a10/}
}
TY  - JOUR
AU  - K. V. Kostousov
TI  - Cayley graphs of groups $\mathbb Z^4$, $\mathbb Z^5$ and $\mathbb Z^6$ which are limit graphs for the finite graphs of minimal valency for vertex-primitive groups of automorphisms
JO  - Sibirskie èlektronnye matematičeskie izvestiâ
PY  - 2008
SP  - 88
EP  - 150
VL  - 5
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/SEMR_2008_5_a10/
LA  - ru
ID  - SEMR_2008_5_a10
ER  - 
%0 Journal Article
%A K. V. Kostousov
%T Cayley graphs of groups $\mathbb Z^4$, $\mathbb Z^5$ and $\mathbb Z^6$ which are limit graphs for the finite graphs of minimal valency for vertex-primitive groups of automorphisms
%J Sibirskie èlektronnye matematičeskie izvestiâ
%D 2008
%P 88-150
%V 5
%I mathdoc
%U http://geodesic.mathdoc.fr/item/SEMR_2008_5_a10/
%G ru
%F SEMR_2008_5_a10
K. V. Kostousov. Cayley graphs of groups $\mathbb Z^4$, $\mathbb Z^5$ and $\mathbb Z^6$ which are limit graphs for the finite graphs of minimal valency for vertex-primitive groups of automorphisms. Sibirskie èlektronnye matematičeskie izvestiâ, Tome 5 (2008), pp. 88-150. http://geodesic.mathdoc.fr/item/SEMR_2008_5_a10/

[1] M. Giudici, C. H. Li, C. E. Praeger, A. Seress, V. Trofimov, “On limit graphs of finite vertex-primitive graphs”, J. Comb. Theory. Ser. A, 114 (2007), 110–134 | DOI | MR | Zbl

[2] Kostousov K. V., “Grafy Keli gruppy $\mathbb Z^d$ i predely vershinno-primitivnykh grafov $HA$-tipa”, Sib. mat. zhurnal, 48:3 (2007), 606–620 | MR | Zbl

[3] Kostousov K. V., “O grafakh Keli gruppy $\mathbb Z^4$, yavlyayuschikhsya predelnymi dlya mnozhestva minimalnykh vershinno-primitivnykh grafov $HA$-tipa”, Trudy IMM UrO RAN, 13, no. 1, 2007, 132–147 | MR

[4] The GAP Group. GAP – Groups, Algorithms, and Programming, Version 4.4, Aachen, St Andrews, , 2004 http://www.gap-system.org

[5] J. Opgenorth, W. Plesken, T. Schultz, “Crystallographic Algorithms and Tables”, Acta Cryst A, 54 (1998), 517–531 | DOI | MR | Zbl

[6] CARAT – Crystallographic AlgoRithms And Tables. Version 2.0, http://wwwb.math.rwth-aachen.de/ carat/

[7] Maple – comprehensive computer system for advanced mathematics, Version 8, http://www.maplesoft.com