On the Mazurov conjecture
Sibirskie èlektronnye matematičeskie izvestiâ, Tome 5 (2008), pp. 8-13

Voir la notice de l'article provenant de la source Math-Net.Ru

A conjecture by V. D. Mazurov states that if, in a $2$-Frobenius group $G=P\lambda(\langle x\rangle\lambda\langle y\rangle)$ of type $(p,q,r)$, the subgroup $C_P(y)$ is of exponent $p$ then $Exp(P)=p$. In [1] this conjecture is proved for $2$-Frobenius groups of type $(3,5,2)$. In this paper a counterexample to Mazurov's conjecture is constructed.
@article{SEMR_2008_5_a1,
     author = {V. A. Antonov and S. G. Chekanov},
     title = {On the {Mazurov} conjecture},
     journal = {Sibirskie \`elektronnye matemati\v{c}eskie izvesti\^a},
     pages = {8--13},
     publisher = {mathdoc},
     volume = {5},
     year = {2008},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/SEMR_2008_5_a1/}
}
TY  - JOUR
AU  - V. A. Antonov
AU  - S. G. Chekanov
TI  - On the Mazurov conjecture
JO  - Sibirskie èlektronnye matematičeskie izvestiâ
PY  - 2008
SP  - 8
EP  - 13
VL  - 5
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/SEMR_2008_5_a1/
LA  - ru
ID  - SEMR_2008_5_a1
ER  - 
%0 Journal Article
%A V. A. Antonov
%A S. G. Chekanov
%T On the Mazurov conjecture
%J Sibirskie èlektronnye matematičeskie izvestiâ
%D 2008
%P 8-13
%V 5
%I mathdoc
%U http://geodesic.mathdoc.fr/item/SEMR_2008_5_a1/
%G ru
%F SEMR_2008_5_a1
V. A. Antonov; S. G. Chekanov. On the Mazurov conjecture. Sibirskie èlektronnye matematičeskie izvestiâ, Tome 5 (2008), pp. 8-13. http://geodesic.mathdoc.fr/item/SEMR_2008_5_a1/