On the stability of extremal surfaces for a~certain area type functional
Sibirskie èlektronnye matematičeskie izvestiâ, Tome 4 (2007), pp. 113-132.

Voir la notice de l'article provenant de la source Math-Net.Ru

In this paper we study the some questions about stability of the surfaces, which are the extremals of the area type functional. Stability, means, is called positively or negatively determined of second variation of functional for all any sufficiently small deformations of surface. In the work we obtain of the formulas first and second variation of functional, the capacity feature of instability, the conditions of stability and instability in the terms of the structure of surface image under Gaussian map. We consider some examples by application our results for research of stability of rotation surfaces.
@article{SEMR_2007_4_a7,
     author = {V. A. Klyachin and N. M. Medvedeva},
     title = {On the stability of extremal surfaces for a~certain area type functional},
     journal = {Sibirskie \`elektronnye matemati\v{c}eskie izvesti\^a},
     pages = {113--132},
     publisher = {mathdoc},
     volume = {4},
     year = {2007},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/SEMR_2007_4_a7/}
}
TY  - JOUR
AU  - V. A. Klyachin
AU  - N. M. Medvedeva
TI  - On the stability of extremal surfaces for a~certain area type functional
JO  - Sibirskie èlektronnye matematičeskie izvestiâ
PY  - 2007
SP  - 113
EP  - 132
VL  - 4
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/SEMR_2007_4_a7/
LA  - ru
ID  - SEMR_2007_4_a7
ER  - 
%0 Journal Article
%A V. A. Klyachin
%A N. M. Medvedeva
%T On the stability of extremal surfaces for a~certain area type functional
%J Sibirskie èlektronnye matematičeskie izvestiâ
%D 2007
%P 113-132
%V 4
%I mathdoc
%U http://geodesic.mathdoc.fr/item/SEMR_2007_4_a7/
%G ru
%F SEMR_2007_4_a7
V. A. Klyachin; N. M. Medvedeva. On the stability of extremal surfaces for a~certain area type functional. Sibirskie èlektronnye matematičeskie izvestiâ, Tome 4 (2007), pp. 113-132. http://geodesic.mathdoc.fr/item/SEMR_2007_4_a7/

[1] Kobayasi Sh., Nomidzu K., Osnovy differentsialnoi geometrii, v. II, Nauka. Glavnaya redaktsiya fiziko-matematicheskoi literatury, M., 1981 (per s angl.)

[2] Aminov Yu. A., Minimalnye poverkhnosti. Tsikl lektsii, Rotaprint, KhGU, Kharkov, 1978, 126 . pp.

[3] do Carmo M., Peng C. K., “The stable minimal surfaces in $\rm R^3$ are planes”, Bull.(Ne Ser.) Amer. Math. Soc., 1 (1979), 903–906 | DOI | MR | Zbl

[4] Fomenko A.T., “O skorosti rosta i naimenshikh ob'emakh globalno minimalnykh poverkhnostei v kobordizmakh”, Tr. seminara po vekt. i tenz. analizu, 21, MGU, M., 1985, 3–12 | MR

[5] Tuzhilin A. A., Fomenko A. T., Elementy geometrii i topologii minimalnykh poverkhnostei, Nauka, M., 1991 | MR

[6] Tuzhilin A. A., “Indeksy tipa Morsa dvumernykh minimalnykh poverkhnostei v $\rm R^3$ i $\rm H^3$”, Izv. AN SSSR. Ser. matem., 55:2 (1991), 581–607 | MR

[7] Pogorelov A. V., “Ob ustoichivosti minimalnykh poverkhnostei”, DAN SSSR, 260:2 (1981), 293–295 | MR | Zbl

[8] Hoffman D., Osserman R., “The area of generalized gaussian image and the stability of minimal surfaces in $S^n$ and $R^n$”, Math. Ann., 260 (1982), 437–452 | DOI | MR | Zbl

[9] Klyachin V. A., Miklyukov V. M., “Ob odnom emkostnom priznake neustoichivosti minimalnykh giperpoverkhnostei”, Dokl. RAN., 330:4 (1993), 424–426 | MR | Zbl

[10] Finn R., Vogel T. I., “On the volume infimum for liquid bridges”, Z. Anal. Anwendungen, 11 (1992), 3–23 | MR | Zbl

[11] Langbein D., “Stability of liquid bridges between parallel plates”, Microgravity Sci. Techn., 5 (1992), 2–11

[12] Finn R., Ravnovesnye kapillyarnye poverkhnosti. Matematicheskaya teoriya, Mir, M., 1989, 312 pp. | MR

[13] Saranin V. A., Ravnovesie zhidkostei i ego ustoichivost, Institut kompyuternykh issledovanii, M., 2002, 144 pp.

[14] Klyachin V. A., Miklyukov V. M., “Maksimalnye giperpoverkhnosti trubchatogo tipa v prostranstve Minkovskogo”, Izv. AN SSSR. Ser. mat., 55:1 (1991), 206–217 | MR

[15] Poznyak E. G., Shikin E. V., Differentsialnaya geometriya: pervoe znakomstvo, Izd-vo MGU, M., 1990 | Zbl

[16] Kobayasi Sh., Nomidzu K., Osnovy differentsialnoi geometrii, v. I, Nauka. Glavnaya redaktsiya fiziko-matematicheskoi literatury, M., 1981 (per s angl.)

[17] Medvedeva N. M., “Kvazikonformnost gaussova otobrazheniya i ustoichivost ekstremalnykh poverkhnostei”, Mezhdunarodnaya shkola – konferentsiya po analizu i geometrii, posvyaschennaya 75-letiyu akademika Yu. G. Reshetnyaka: Tezisy dokladov, Novosibirsk, 2004 | Zbl

[18] Vladimir G. Tkachev, “External geometry of $p$-minimal surfaces”, Geometry from the Pacific Rim (Singapore, 1994), de Gruyter, Berlin, 1997, 363–375 | MR | Zbl

[19] Uorner R., Gladkie mnogoobraziya i gruppy Li, Bibfizmat, 1987

[20] Klyachin V. A., Miklyukov V. M., “Priznaki neustoichivosti poverkhnostei nulevoi srednei krivizny v iskrivlennykh lorentsevykh proizvedeniyakh”, Matem. sb., 187:11 (1996), 67–88 | MR | Zbl

[21] Belinskii P. P., Obschie svoistva kvazikonformnykh otobrazhenii, Nauka, Novosibirsk, 1974 | MR | Zbl

[22] Goldshtein V. M., Reshetnyak Yu. G., Vvedenie v teoriyu funktsii s obobschennymi proizvodnymi i kvazikonformnye otobrazheniya, Nauka, M., 1983 | MR

[23] Khardi G. G., Littlvud Dzh. E., Polia G., Neravenstva, Gosudarstvennoe izdatelstvo inostrannoi literatury, M., 1948