Hyperbolicity of one-relator groups
Sibirskie èlektronnye matematičeskie izvestiâ, Tome 4 (2007), pp. 85-102
Cet article a éte moissonné depuis la source Math-Net.Ru
The goal of this work is to understand whether one-relator group $G=\langle a,b|R(a,b)\rangle$, $R(a,b)$ – relator of a special kind, is hyperbolic or not. There were applied combinatorial and geometric methods by S. Ivanov and P. Schupp, based on the use of the diagrams over a group. The result of this work consists of two theorems which classify group $G$ for all the kinds of $R(a,b)$ except two of them.
@article{SEMR_2007_4_a5,
author = {N. V. Buskin},
title = {Hyperbolicity of one-relator groups},
journal = {Sibirskie \`elektronnye matemati\v{c}eskie izvesti\^a},
pages = {85--102},
year = {2007},
volume = {4},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/SEMR_2007_4_a5/}
}
N. V. Buskin. Hyperbolicity of one-relator groups. Sibirskie èlektronnye matematičeskie izvestiâ, Tome 4 (2007), pp. 85-102. http://geodesic.mathdoc.fr/item/SEMR_2007_4_a5/
[1] S. V. Ivanov and P. E. Shupp, “On the hyperbolicity of small cancellation groups and one-relator groups”, TAMS, 350:5 (1998), 1851–1894 | DOI | MR | Zbl
[2] V. Magnus, A. Karras, D. Soliter, Kombinatornaya teoriya grupp, Nauka, M., 1974 | MR | Zbl
[3] M. Gromov, “Hyperbolic groups”, Essays in Group Theory, M.S.R.I. Publ., 8, ed. S. M. Gersten, Springer, 1987, 75–263 | MR
[4] R. Lindon, P. Shupp, Kombinatornaya teoriya grupp, Mir, M., 1980 | MR
[5] H. Servatius, “Automorphisms of graph groups”, J. Algebra, 126:1 (1989), 34–60 | DOI | MR | Zbl
[6] O. Bogopolski, A. Martino, E. Ventura, The automorphism group of a free-by-cyclic group in rank 2, preprint No 640, Centre de Reserca Matematica, Bellaterra, July 2005 | MR