On conditions for SLLN for martingales with identically distributed increments
Sibirskie èlektronnye matematičeskie izvestiâ, Tome 4 (2007), pp. 547-552.

Voir la notice de l'article provenant de la source Math-Net.Ru

For any random variable $X$ with $\mathbf E\big[|X|\log(1+|X|)\big]=\infty$ and $\mathbf{E}X=0$ we construct a sequence $\{X_n:n\ge1\}$ of martingale differences which are identically distributed with $X$ and such that the strong law of large numbers does not hold.
@article{SEMR_2007_4_a29,
     author = {A. I. Sakhanenko},
     title = {On conditions for {SLLN} for martingales with identically distributed increments},
     journal = {Sibirskie \`elektronnye matemati\v{c}eskie izvesti\^a},
     pages = {547--552},
     publisher = {mathdoc},
     volume = {4},
     year = {2007},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SEMR_2007_4_a29/}
}
TY  - JOUR
AU  - A. I. Sakhanenko
TI  - On conditions for SLLN for martingales with identically distributed increments
JO  - Sibirskie èlektronnye matematičeskie izvestiâ
PY  - 2007
SP  - 547
EP  - 552
VL  - 4
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/SEMR_2007_4_a29/
LA  - en
ID  - SEMR_2007_4_a29
ER  - 
%0 Journal Article
%A A. I. Sakhanenko
%T On conditions for SLLN for martingales with identically distributed increments
%J Sibirskie èlektronnye matematičeskie izvestiâ
%D 2007
%P 547-552
%V 4
%I mathdoc
%U http://geodesic.mathdoc.fr/item/SEMR_2007_4_a29/
%G en
%F SEMR_2007_4_a29
A. I. Sakhanenko. On conditions for SLLN for martingales with identically distributed increments. Sibirskie èlektronnye matematičeskie izvestiâ, Tome 4 (2007), pp. 547-552. http://geodesic.mathdoc.fr/item/SEMR_2007_4_a29/

[1] P. Hall, C. C. Heyde, Martingale Limit Theory and Its Application, Academic Press, New York, 1980 | MR