Sheaves and $\mathfrak{Ta}$-bicompactifications of mappings
Sibirskie èlektronnye matematičeskie izvestiâ, Tome 4 (2007), pp. 504-546.

Voir la notice de l'article provenant de la source Math-Net.Ru

The paper is devoted to an investigation of relations between bicompactifications of mappings and sheaves of algebras. Bicompactifications of mappings are a generalization of compactifications of topological spaces, and sheaves of algebras take place of algebras of continuous bounded functions on topological spaces. The first section contains a historical review of main constructions and notions used in the paper as well as a short introduction to the theory of bicompactifications of mappings. In particular, we state here basic definitions and recall some statements about bicompactifications of mappings that were obtained earlier. In the second section some new topological properties of the fan product and the inverse limit are proved. The third section contains important constructions which are used for an upbuilding of bicompactifications of mappings. Several new properties of these constructions are proved. The fourth section is devoted to a definition and an investigation of algebras of functions on mappings. In this section a natural topology on these algebras is defined; the class of globally completely regular mappings is singled out for which such algebras play a role similar to that of algebras of continuous bounded functions on completely regular spaces; a functor from the category of mappings to the category of perfect globally completely regular mappings is constructed which preserves algebras of continuous “bounded” functions on mappings; a correspondence between “mappings” of mappings and homomorphisms of their algebras is investigated. In the fifth section sheaves of algebras connected with mappings are defined and investigated. The sixth section contains a proof of the main result of the paper: there exists a one-to-one correspondence preserving the order between the set of all $\mathfrak{Ta}$-bicompactifications of a given mapping and the set of all sheaves of a special kind. In the seventh section we define maximal closed ideals of sheaves of algebras; relations between these ideals and points of $\mathfrak{Ta}$ of a given mapping are investigated.
@article{SEMR_2007_4_a28,
     author = {V. M. Ulyanov},
     title = {Sheaves and $\mathfrak{Ta}$-bicompactifications of mappings},
     journal = {Sibirskie \`elektronnye matemati\v{c}eskie izvesti\^a},
     pages = {504--546},
     publisher = {mathdoc},
     volume = {4},
     year = {2007},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SEMR_2007_4_a28/}
}
TY  - JOUR
AU  - V. M. Ulyanov
TI  - Sheaves and $\mathfrak{Ta}$-bicompactifications of mappings
JO  - Sibirskie èlektronnye matematičeskie izvestiâ
PY  - 2007
SP  - 504
EP  - 546
VL  - 4
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/SEMR_2007_4_a28/
LA  - en
ID  - SEMR_2007_4_a28
ER  - 
%0 Journal Article
%A V. M. Ulyanov
%T Sheaves and $\mathfrak{Ta}$-bicompactifications of mappings
%J Sibirskie èlektronnye matematičeskie izvestiâ
%D 2007
%P 504-546
%V 4
%I mathdoc
%U http://geodesic.mathdoc.fr/item/SEMR_2007_4_a28/
%G en
%F SEMR_2007_4_a28
V. M. Ulyanov. Sheaves and $\mathfrak{Ta}$-bicompactifications of mappings. Sibirskie èlektronnye matematičeskie izvestiâ, Tome 4 (2007), pp. 504-546. http://geodesic.mathdoc.fr/item/SEMR_2007_4_a28/

[1] S. M. Ageev, “Absolyuty v kategorii $G$-prostranstv”, Soobscheniya Akademii nauk Gruzinskoi SSR Bulletin of the Academy of sciences of the Georgian SSR, 122:2 (1986), 245–248 | MR | Zbl

[2] S. M. Ageev, “Proobrazy, opredelyaemye $\sigma$-idealami mnozhestv”, Kardinalnye invarianty i otobrazheniya topologicheskikh prostranstv, Izhevsk, 1984, 63–68

[3] P. S. Aleksandrov, B. A. Pasynkov, Vvedenie v teoriyu razmernosti, Moskva, 1973

[4] I. V. Bludova, O $\mathcal E$-kompaktifikatsiyakh nepreryvnykh otobrazhenii, Rukopis deponirovana v VINITI 27 avgusta 1990 goda No 4796-V90. RZhMat, Referativnyi zhurnal “Matematika”. 1991, 1A618Dep., Moskva, 1990

[5] I. V. Bludova, O $\mathcal E$-kompaktnykh otobrazheniyakh, Rukopis deponirovana v VINITI 17 aprelya 1990 goda, No 2074-V90. RZhMat, 1990, 8A448Dep., Moskva, 1990

[6] A. A. Borubaev, “Geometriya ravnomerno nepreryvnykh otobrazhenii”, Soobscheniya akademii nauk Gruzinskoi SSR. Bulletin of the Academy of sciences of the Georgian SSR, 137:3 (1990), 497–500 | MR | Zbl

[7] N. Burbaki, Obschaya topologiya. Osnovnye struktury. Elementy matematiki, Moskva, 1968 ; N. Bourbaki, Topologie générale. Chapitre 1. Structures topologiques. Chapitre 2. Structures uniformes. Éléments de mathématique, Paris, 1965; English translation Paris, 1966 | MR

[8] P. T. Johnstone, Topos theory, London, New York, San Francisco, 1977 | MR | MR

[9] A. V. Zarelua, “O ravenstve razmernostei”, Matematicheskii sbornik, 62(104):3 (1963), 295–319 | MR | Zbl

[10] V. K. Zakharov, A. V. Koldunov, “Sekventsialnyi absolyut i ego kharakterizatsii”, Doklady Akademii nauk SSSR, 253:2 (1980), 280–284 | MR | Zbl

[11] N. I. Ilina, Postroenie rashirenii $\beta f$ i $\nu f$ nepreryvnogo otobrazheniya $f$ pri pomoschi vpolne regulyarnykh kontsov otkrytykh mnozhestv, Rukopis deponirovana v VINITI 19 aprelya 1990 goda, No 2113-V90. RZhMat, 1990, 8A454Dep., Omsk, 1990

[12] N. I. Ilina, Postroenie rasshirenii $\beta f$ i $\nu f$ nepreryvnogo otobrazheniya $f$ pri pomoschi ultrafiltrov, Rukopis deponirovana v VINITI 19 aprelya 1990 goda, No2114-V90. RZhMat, 1990, 8A455Dep., Omsk, 1990

[13] N. I. Ilina, Postroenie rasshirenii $\omega f$ i $\nu^\omega f$ nepreryvnogo otobrazheniya $f$ pri pomoschi ultrafiltrov, Rukopis deponirovana v VINITI 19 aprelya 1990 goda, No2115-V90. RZhMat, 1990, 8A456Dep., Omsk, 1990

[14] K. Ishmakhametov, “Bikompaktifikatsii i narosty konechnogo poryadka tikhonovskikh otobrazhenii”, Sbornik “Issledovaniya po topologii i geometrii”, Frunze, 1985, 47–53 | MR

[15] K. Ishmakhametov, O bikompaktifikatsiyakh pochti lokalno sovershennykh otobrazhenii, Rukopis deponirovana v Kirgizskom INTI 14 yanvarya 1987 goda, No257-Ki87. RZhMat, 1987, 6A604Dep., Frunze, 1987

[16] A. V. Koldunov, “Nepreryvnye funktsii na $(M,I)$-absolyutakh”, Izvestiya vysshikh uchebnykh zavedenii, Matematika, 1987, no. 10(305), 63–66 | MR

[17] A. V. Koldunov, “Funktsionalnaya kharakterizatsiya $(M,I)$-absolyutov”, Sbornik “Priblizheniya funktsii spetsialnymi klassami operatorov”, Vologda, 1987, 87–95 | MR | Zbl

[18] L. T. Krezhevskikh, O maksimalnykh podalgebrakh na otobrazheniyakh, Rukopis deponirovana v VINITI 11 sentyabrya 1990 goda, No4991-V90. RZhMat, 1991, 1A617Dep., Glazov, 1990

[19] L. T. Krezhevskikh, B. A. Pasynkov, “Ob analoge dlya otobrazheniya banakhovoi algebry nepreryvnykh funktsii na prostranstve”, Geometriya pogruzhennykh mnogoobrazii, Moskva, 1986, 47–52 | MR | Zbl

[20] B. I. Lazarov, “O lokalno sovershennykh prodolzheniyakh nepreryvnogo otobrazheniya”, Doklady Bolgarskoi akademii nauk. Comptes rendus de l'Academie bulgare des Sciences, 39:6 (1986), 13–16 | MR | Zbl

[21] M. Elkh., R. Mazroa, “O punktiformnykh bikompaktifikatsiyakh nepreryvnykh otobrazhenii”, Sbornik “Obschaya topologiya. Prostranstva i otobrazheniya”, Moskva, 1989, 80–84 | MR

[22] M. Elkh., R. Mazroa, “O sovershennykh bikompaktifikatsiyakh nepreryvnykh otobrazhenii”, Vestnik Moskovskogo universiteta, Seriya 1, matematika, mekhanika, 1990, no. 1, 23–26 | MR

[23] M. Elkh., R. Mazroa, “Perifericheski bikompaktnye otobrazheniya i ikh bikompaktifikatsii”, Sbornik “Obschaya topologiya. Prostranstva i otobrazheniya”, Moskva, 1989, 148–152 | MR

[24] V. A. Matveev, “O sovershennykh neprivodimykh proobrazakh topologicheskikh prostranstv”, Vestnik Moskovskogo universiteta, Seriya 1, matematika, mekhanika, 1988, no. 4, 80–82 | MR | Zbl

[25] V. A. Matveev, “O $\mathfrak{Ta}$-bikompaktifikatsiyakh otobrazhenii”, Sbornik “Topologicheskie prostranstva i ikh kardinalnye invarianty”, Ustinov, 1986, 43–45

[26] V. A. Matveev, “Ob otdelimykh bikompaktifikatsiyakh otobrazhenii”, Vestnik Moskovskogo universiteta, Seriya 1, matematika, mekhanika, 1988, no. 1, 94–95 | MR

[27] V. A. Matveev, V. M. Ulyanov, “O $\mathfrak T$-bikompaktifikatsiyakh otobrazhenii”, Uspekhi matematicheskikh nauk, 37:2(224) (1982), 211–212 | MR | Zbl

[28] M. A. Naimark, Normirovannye koltsa, Moskva, 1968 | MR | Zbl

[29] V. P. Norin, “O blizostyakh dlya otobrazhenii”, Vestnik Moskovskogo universiteta, Seriya 1, matematika, mekhanika, 1982, no. 4, 33–36 | MR | Zbl

[30] V. P. Norin, “O $m$-blizostyakh i teoreme Smirnova”, Sbornik “Otobrazheniya i funktory”, Moskva, 1984, 59–66 | MR | Zbl

[31] R. N. Ormotsadze, “Otobrazheniya, sovershennye v $n$-i beskonechnosti”, Soobscheniya Akademii nauk Gruzinskoi SSR. Bulletin of the Academy of sciences of the Georgian SSR, 136:3 (1989), 529–532 | MR | Zbl

[32] B. A. Pasynkov, “Blizosti na otobrazheniyakh”, Sbornik “Obschaya topologiya. Prostranstva i otobrazheniya”, Moskva, 1989, 99–113 | MR

[33] B. A. Pasynkov, “O blizostyakh na otobrazheniyakh”, Doklady Bolgarskoi akademii nauk. Comptes rendus de l'Academie bulgare des Sciences, 42:4 (1989), 5–6 | MR | Zbl

[34] B. A. Pasynkov, “O rasprostranenii na otobrazheniya nekotorykh ponyatii i utverzhdenii, kasayuschikhsya prostranstv”, Sbornik “Otobrazheniya i funktory”, Moskva, 1984, 72–102 | MR | Zbl

[35] B. A. Pasynkov, “Partial topological products”, Transactions of the Moscow Mathematical Society, 1965, 153–272 | MR

[36] Yu. P. Pershin, Smezhnosti na nepreryvnykh otobrazheniyakh, Rukopis deponirovana v VINITI 3 noyabrya 1989 goda, No6699-V89. RZhMat, 1990, 3A484Dep., Moskva, 1989 | Zbl

[37] Yu. P. Pershin, Rukopis deponirovana v VINITI 19 sentyabrya 1989 goda, No5936-V89. RZhMat, 1990, 2A501Dep., Moskva, 1989 | Zbl

[38] Yu. P. Pershin, $\theta$-predblizosti i bikompaktifikatsii tikhonovskikh $\theta$-proobrazov dlya nepreryvnykh otobrazhenii, Rukopis deponirovana v VINITI 19 sentyabrya 1989 goda, No5935-V89. RZhMat, 1990, 2A500Dep., Moskva, 1989 | Zbl

[39] N. S. Strekolovskaya, “O maksimalnoi bikompaktifikatsii nepreryvnykh otobrazhenii vpolne regulyarnykh prostranstv”, Vestnik Moskovskogo universiteta, Seriya 1, matematika, mekhanika, 1991, no. 1, 24–27 | MR | Zbl

[40] V. M. Ul'janov, “Bicompact extensions with the first axiom of countability and continuous mappings”, Mathematical Notes, 15 (1974), 287–291 | MR

[41] V. M. Ul'janov, “First countable compactifications that do not raise weight or dimension”, Soviet Mathematics Doklady, 14:4 (1974), 1218–1222

[42] V. M. Ulyanov, “Vnutrennyaya kharakteristika otobrazhenii so svoistvom $\mathfrak{Ta}$”, Sbornik "Materialy nauchno-tekhnicheskoi konferentsii Novomoskovskogo filiala Moskovskogo khimiko-tekhnologicheskogo instituta. Novomoskovsk, 19–23 maya 1986. Chast 2, Moskva, 1987, 250–253; Рукопись депонирована в ВИНИТИ 28 января 1987 года, No669-В87. РЖМат, 1987, 5А585Деп.

[43] V. M. Ul'janov, “On compactifications satisfying the first axiom of countability and absolutes”, Mathematics of the USSR Sbornik, 27:2, 199–226 | DOI | MR

[44] V. M. Ulyanov, “O vpolne zamknutykh i blizkikh k nim otobrazheniyakh”, Uspekhi matematicheskikh nauk, 30:3(183) (1975), 177–178 | MR

[45] V. M. Ulyanov, “O maksimalnoi otdelimoi $\mathfrak{T^Ea}$-bikompaktifikatsii”, Sbornik “Seminar po obschei topologii”, Moskva, 1981, 156–161 | MR

[46] V. M. Ulyanov, “O metrizuemosti prostranstva $Y_{\mathfrak A}=\mathfrak P(Y,\{Z_{\alpha} \},\{G_{\alpha}\},\{O_{\alpha}\},\{g_{\alpha}\},\alpha\in\mathfrak A)$”, Sbornik “Materialy nauchno-tekhnicheskoi konferentsii Novomoskovskogo filiala Moskovskogo khimiko-tekhnologicheskogo instituta. Novomoskovsk, 6–11 fevralya 1984. Chast 3”, Moskva, 1984, 163–166; Рукопись депонирована в ВИНИТИ 28 ноября 1984 года, No7581-84. РЖМат, 1985, 3А530Деп.

[47] V. M. Ulyanov, “Otobrazhenie, obladayuschee svoistvom $\mathfrak{Ta}$, no ne obladayuschee svoistvom $\mathfrak{Ta_{\text{np}}}$”, Sbornik “Materialy nauchno-tekhnicheskoi konferentsii Novomoskovskogo filiala Moskovskogo khimiko-tekhnologicheskogo instituta. Novomoskovsk, 6–11 fevralya 1984. Chast 3”, Moskva, 1984, 167–169; Рукопись депонирована в ВИНИТИ 28 ноября 1984 года, No7581-84. РЖМат, 1985, 3А540Деп.

[48] V. M. Ul'janov, “Solution of a basic problem on compactifications of Wallman type”, Soviet Mathematics Doklady, 18:2 (1977), 567–571

[49] V. V. Fedorčuk, “Bicompacta with noncoinciding dimensionalities”, Soviet Mathematics Doklady, 9 (1968), 1148–1150 | MR | Zbl | Zbl

[50] L. B. Shapiro, “Ob absolyutakh topologicheskikh prostranstv i nepreryvnykh otobrazhenii”, Doklady Akademii nauk SSSR, 226:3 (1976), 523–526 | MR | Zbl

[51] R. Engelking, Obschaya topologiya, Moskva, 1986 ; Ryszard Engelking, General topology, Warsaw, 1977 ; Berlin, 1989 | Zbl | MR

[52] Leonid Bobkov, “About the coincidence of weight and network weight for mappings”, Zbornik radova Filozofskog faculteta u Nišu, serija matematika, 4 (1990), 105–108 | MR | Zbl

[53] A. A. Borubaev, “On completeness and completions of uniformity continuous mappings”, Zbornik radova Filozofskog faculteta u Nišu, serija matematika, 4 (1990), 95–97 | MR | Zbl

[54] George L.Cain, Jr., “Compactifications of mappings”, Proceedings of the American Mathematical Society, 23:2 (1969), 298–303 | DOI | MR | Zbl

[55] Roy Dyckhoff, “Factorization theorems and projective spaces in topology”, Mathematische Zeitschrift, 127:3 (1972), 256–264 | DOI | MR

[56] T. K. Dyikanov, “On $\mu$-bounded and precompact uniform mappings”, Zbornik radova Filozofskog faculteta u Nišu, serija matematika, 4 (1990), 99–100 | MR | Zbl

[57] Horst Herrlich, “$\mathfrak{E}$-kompakt Räume”, Mathematische Zeitschrift, 96 (1967), 229–255 | MR

[58] I. M. James, Fibrewise topology, Cambridge Tracts in Mathematics, 91, Cambridge, New York, Port Chester, Melbourne, Sydney, 1989 | MR | Zbl

[59] Wojciech Olszewski, “Universal spaces for locally finite-dimensional and strongly countable-dimensional metrizable spaces”, Fundamenta Mathematicae, 135 (1990), 45–49 | MR

[60] Yuri Pershin, “Contiguities and proximities on mappings”, Zbornik radova Filozofskog fakulteta u Nišu, Serija matematika, 4 (1990), 45–49 | MR | Zbl

[61] Jan R. Strooker, Introduction to categories, homological algebra and sheaf cohomology, Cambridge, London, New York, Melbourn, 1978 | MR

[62] V. M. Ulyanov, “The sequential absolute and the other analogs of the absolute”, Topology, Proceedings (Leningrad, 1982), Lecture Notes in Mathematics, 1060, Berlin, Heidelberg, New York, Tokyo, 1984, 95–104 | MR | Zbl

[63] G. T. Whyburn, “A unified space for mappings”, Transactions of the American Mathematical Society, 74:2 (1953), 344–350 | MR | Zbl

[64] R. Grant Woods, “Generalization of absolutes of topological spaces”, Supplemento ai Rendiconti del Circolo matematico di Palermo", serie II, 18 (1988), 121–139 | MR | Zbl