The hierarchical SPH-method for mathematical simulation in gravitational gas dynamics
Sibirskie èlektronnye matematičeskie izvestiâ, Tome 4 (2007), pp. 376-434.

Voir la notice de l'article provenant de la source Math-Net.Ru

This work has been directed to a creation of new modern computer technologies and methods of programming for the rise of efficacy of solving of fundamental scientific and applied problems in gravitational gas dynamics connected with great volume of the calculations. The main attention has been given to theoretical questions and their practical application for the improvement of Smoothed Particles Hydrodynamics (SPH) method and algorithm of solving of complicated integro-differential systems of equations. The various aspects of method are considered. The degree of efficacy has been analyzed for determination of an optimal way of problem solving. The careful verification of theoretical method, calculating algorithm and computer program complex for detailed analysis of properties (exactitude of calculation and performance of computing process) is carried out. The executed theoretical investigations are used for creation of computer program complex of new generation for solving of space gas dynamics problems. The cycle of computer calculations of problems (in wide range of determinating parameters and starting data) of self-gravitational sphere collapse and protoplanet gas cloud evolution is executed and the analysis of received results is carried out.
@article{SEMR_2007_4_a23,
     author = {A. V. Aliev and G. A. Tarnavskii},
     title = {The hierarchical {SPH-method} for mathematical simulation in gravitational gas dynamics},
     journal = {Sibirskie \`elektronnye matemati\v{c}eskie izvesti\^a},
     pages = {376--434},
     publisher = {mathdoc},
     volume = {4},
     year = {2007},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/SEMR_2007_4_a23/}
}
TY  - JOUR
AU  - A. V. Aliev
AU  - G. A. Tarnavskii
TI  - The hierarchical SPH-method for mathematical simulation in gravitational gas dynamics
JO  - Sibirskie èlektronnye matematičeskie izvestiâ
PY  - 2007
SP  - 376
EP  - 434
VL  - 4
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/SEMR_2007_4_a23/
LA  - ru
ID  - SEMR_2007_4_a23
ER  - 
%0 Journal Article
%A A. V. Aliev
%A G. A. Tarnavskii
%T The hierarchical SPH-method for mathematical simulation in gravitational gas dynamics
%J Sibirskie èlektronnye matematičeskie izvestiâ
%D 2007
%P 376-434
%V 4
%I mathdoc
%U http://geodesic.mathdoc.fr/item/SEMR_2007_4_a23/
%G ru
%F SEMR_2007_4_a23
A. V. Aliev; G. A. Tarnavskii. The hierarchical SPH-method for mathematical simulation in gravitational gas dynamics. Sibirskie èlektronnye matematičeskie izvestiâ, Tome 4 (2007), pp. 376-434. http://geodesic.mathdoc.fr/item/SEMR_2007_4_a23/

[1] Ginzburg V. L., “Kakie problemy fiziki i astrofiziki predstavlyayutsya seichas osobenno vazhnymi i interesnymi?”, Uspekhi fiz. nauk, 169:4 (1999), 419–441 | DOI | MR

[2] Kontrimavichyus V. L., “Istoki ucheniya o noosfere”, Vestnik RAN, 73:11 (2003), 1002–1009

[3] Landau L. D., Livshits E. M., Teoriya polya, Nauka, M., 1967 | Zbl

[4] Zeldovich Ya. B., Raizer Yu. P., Fizika udarnykh voln i vysokotemperaturnykh gidrodinamicheskikh yavlenii, Nauka, M., 1966

[5] Godunov S. K., Zabrodin A. V., Ivanov M. Ya., Kraiko A. N., Prokopov G. P., Chislennoe reshenie zadach gazovoi dinamiki, Nauka, M., 1976 | MR | Zbl

[6] Klark Dzh., Makchesni M., Dinamika realnykh gazov, Mir, M., 1967

[7] Prigozhin I., Kondepudi D., Sovremennaya termodinamika. Ot teplovykh dvigatelei do dissipativnykh struktur, Mir, M., 2002

[8] Rumer Yu. B., Ryvkin M. S., Termodinamika, statisticheskaya fizika i kinetika, Nauka, M., 1972

[9] Golubyatnikov A. N., “K obrazovaniyu odnorodnogo razleta gravitiruyuschego gaza pri nalichii gradienta davleniya”, Izv. RAN. Mekh. zhidkosti i gaza, 1998, no. 4, 176–182 | Zbl

[10] Golubyatnikov A. N., Chukin S. S., “O silnom relyativistskom vzryve v srede s peremennoi plotnostyu”, Aeromekhanika i gazovaya dinamika, 2002, no. 2, 86–90

[11] Zakharov A. V., Mukharlyamov R. K., “Makroskopicheskie uravneniya Einshteina dlya sistemy gravitiruyuschikh chastits s raznymi massami”, ZhETF, 123:4 (2003), 665–671

[12] Smirnovskii I. R., “O strukture udarnoi volny v dispergiruyuschei plazme”, Prikl. mekh. i tekhn. fiz., 39:3 (1998), 14–21 | MR

[13] Derevyanko V. A., Zakharov Yu. P., Tarnavskii G. A., “Laboratornoe modelirovanie kollektivnykh protsessov v plazme solnechnogo vetra”, Matematicheskie modeli blizhnego kosmosa, Nauka, Novosibirsk, 1977, 204–215

[14] Markovskii S. A., Skorokhodov S. L., “Chislennoe modelirovanie udarnykh voln s neodnoznachnoi strukturoi”, ZhVMMF, 40:9 (2002), 1408–1415 | MR

[15] Gridchina M. E., Osipov A. I., Uvarov A. V., “Vzaimodeistvie zvukovykh i silnykh udarnykh voln”, Aeromekhanika i gazovaya dinamika, 2002, no. 2, 40–47

[16] Kalaidin E. N., “Rasprostranenie pryamykh nestatsionarnykh udarnykh voln po gazu s inversno-zaselennymi urovnyami kolebatelnoi energii”, Izv. RAN. Mekh. zhidkosti i gaza, 1989, no. 5, 159–163

[17] Ivanov M. Ya., Terenteva L. V., “Statsionarnye solitonopodobnye resheniya uravnenii Eilera pri nalichii sobstvennykh silovykh polei”, Prikl. matem. i mekhanika, 63:2 (1999), 258–266 | MR | Zbl

[18] Laskovyi M. V., Levin V. A., Sedov L. I., “Periferiinyi vzryv v samogravitiruyuschem gazovom share i dinamicheskii vzryv ravnovesiya zvezdy”, Izv. RAN. Mekh. zhidkosti i gaza, 1998, no. 3, 157–163

[19] Dudorov A. E., Zhilkin A. G., “Neavtomodelnye rezhimy izotermicheskogo kollapsa protozvezdnykh oblakov”, ZhETF, 123:2 (2003), 195–202

[20] Tsuribe T., Inutsuka S.-I., “Criteria for fragmentation of rotating isothermal clouds. I. Semianalytic approach”, Astrophys. J., 526:2 (1999), 307–313 | DOI

[21] Baranov V. B., “Gazodinamicheskaya model sverkhzvukovogo obtekaniya solnechnogo vetra lokalnoi mezhzvezdnoi sredoi. Svyaz s eksperimentalnymi dannymi”, Uspekhi mekhaniki, 1:1 (2002), 3–31

[22] Zakharov V. V., Krifo Zh. F., Lukyanov G. A., Rodionov A. V., “Modelirovanie vnutrennei atmosfery komet s nesfericheskim yadrom tipa “yabloko””, Matem. modelirovanie, 15:6 (2003), 48–52 | Zbl

[23] Belotserkovskii O. M., Demchenko V. V., Oparin A. M., “Nestatsionarnoe trekhmernoe chislennoe modelirovanie neustoichivosti Rikhtmaiera–Meshkova”, Dokl. RAN, 354:2 (1997), 190–193 | MR

[24] Kunik M., Qamar S., Warnecke G., “Kinetic schemes for the ultra-relativistic Euler equations”, J. Comput. Phys., 187:2 (2003), 572–596 | DOI | MR | Zbl

[25] Marcos C., Barge P., Marcos R., “Dust dynamicsin protoplanetary disks: parallel computing with PVM”, J. Comput. Phys., 176:1 (2002), 274–294

[26] Tarnavskii G. A., Shpak S. I., “Dekompozitsiya metodov i rasparallelivanie algoritmov resheniya zadach aerodinamiki i fizicheskoi gazovoi dinamiki: vychislitelnaya sistema “POTOK-3””, Programmirovanie, 6 (2000), 45–57

[27] Tarnavskii G. A., Tarnavskii A. G., “Multiprotsessornoe kompyuternoe modelirovanie v gravitatsionnoi gazovoi dinamike”, Vychisl. metody i programmirovanie, 6:1 (2005), 71–87

[28] Voevodin V. V., Voevodin Vl. V., Parallelnye vychisleniya, BKhV-Peterburg, SPb, 2002

[29] Komb F., “Ryab v galakticheskom prudu”, V Mire Nauki, 1 (2006), 30–37

[30] Herant M. et al., “Inside the Supernova”, Astrophys. J., 435 (1994), 339–361. | DOI

[31] Belotserkovskii O. M., Oparin A. M., Chechetkin V. M., Turbulentnost: novye podkhody, Nauka, M., 2002

[32] Abakumov M. V., Mukhin S. I., Popov Yu. P., “O nekotorykh zadachakh gravitatsionnoi gazovoi dinamiki”, Mat. modelirovanie, 12:3 (2000), 110–120 | Zbl

[33] Bisikalo D. V., Boyarchuk A. A., Kuznetsov O. A., Chechetkin V. M., “Tsikl rabot po modelirovaniyu dvoinykh sistem”, Astron. zhurn., 1995–2000

[34] “A repulsive force in Universe”, Physics News Update. The American Institute of Physics Bulletin of Physics News, 361 (1998)

[35] Snytnikov V. N., Parmon V. N., Vshivkov V. A., Dudnikova G. I., Nikitin S. A., Snytnikov A. V., “Chislennoe modelirovanie gravitatsionnykh sistem mnogikh tel s gazom”, Vychislitelnye tekhnologii, 7:3 (2002), 72–84 | MR | Zbl

[36] Blinnikov S. I., Vysotskii M. I., Okun L. B., “Skorosti $c/\sqrt{3}$ i $c/\sqrt{2}$ v obschei teorii otnositelnosti”, Uspekhi fiz. nauk, 173:10 (2003), 1131–1136 | DOI

[37] Belotserkovskii O. M., “Matematicheskoe modelirovanie na superkompyuterakh (opyt i tendentsii)”, Zh. vychisl. matem. i mat. fiz., 40:8 (2000), 1221–1236

[38] Tarnavskii G. A., Khakimzyanov G. S., Tarnavskii A. G., “Modelirovanie giperzvukovykh techenii: vliyanie startovykh uslovii na finalnoe reshenie v okrestnosti tochek bifurkatsii”, Inzh.-fizich. zhurn., 76:5 (2003), 101–107

[39] Pandolfi M., D'Ambrosio D., “Numerical instabilities in upwind methods: analysis and cures for the “carbuncle” phenomena”, J. Comput. Phys., 166:2 (2001), 271–301 | DOI | MR | Zbl

[40] Tarnavskii G. A., Korneev V. D., Vainer D. A., Pokryshkina N. M., Slyunyaev A. Yu., Tanaseichuk A. V., Tarnavskii A. G., “Vychislitelnaya sistema “Potok-3”: opyt parallelizatsii programmnogo kompleksa. Chast I. Ideologiya rasparallelivaniya”, Vychisl. metody i programmirovanie, 4:1 (2003), 37–48

[41] Tarnavskii G. A., Tarnavskii A. G., “Sovremennye kompyuternye tekhnologii i needinstvennost reshenii zadach gazovoi dinamiki”, Simmetriya i differentsialnye uravneniya, ed. V. K. Andreev, izd. IVT SO RAN, Krasnoyarsk, 2002, 209–213

[42] Tarnavskii G. A., Shpak S. I., “Nekotorye aspekty kompyuternogo modelirovaniya giperzvukovykh techenii: ustoichivost, needinstvennost i bifurkatsii chislennykh reshenii uravnenii Nave–Stoksa”, Inzhenerno-fizich. zhurn., 74:3 (2001), 125–132

[43] Tarnavskii G. A., Vshivkov V. A., Tarnavskii A. G., “Parallelizatsiya algoritmov i kodov vychislitelnoi sistemy “Potok-3””, Programmirovanie, 1 (2003), 24–44

[44] Harlow F. H., A Machine Calculation Method for Hydrodynamic Problems, Los Alamos Scientific Laboratory report LAMS-1956, November 1955

[45] Park S. H., Kwon J. H., “On the dissipation mechanism of Godunov-type schemes”, J. Comput. Phys., 188:2 (2003), 524–542 | DOI | MR | Zbl

[46] Belyaev N. M., Khrusch V. K., Chislennyi raschet sverkhzvukovykh techenii gaza, Vischa shkola, Kiev, 1984

[47] Shi J., Zhang Y.-T., Shu C.-W., “Resolution of high order WENO schemes for complicated flow structures”, J. Comput. Phys., 186:2 (2003), 690–696 | DOI | MR | Zbl

[48] Tarnavskii G. A., “Udarnye volny v gazakh s razlichnymi pokazatelyami adiabaty do i posle fronta skachka”, Vychisl. metody i programmirovanie, 3:2 (2002), 129–143

[49] Tarnavskii G. A., Shpak S. I., “Effektivnyi pokazatel adiabaty v zadachakh giperzvukovogo obtekaniya tel realnym gazom”, Teplofizika i aeromekhanika, 8:1 (2001), 41–58 | MR

[50] Tarnavskii G. A., Shpak S. I., “Sposoby rascheta effektivnogo pokazatelya adiabaty pri kompyuternom modelirovanii giperzvukovykh techenii”, Sib. zh. industrialnoi matematiki, 4:1(7) (2001), 177–197

[51] Tarnavskii G. A., Aulchenko S. M., Vshivkov V. A., “Matematicheskoe modelirovanie nestatsionarnykh trekhmernykh protsessov v kosmicheskoi gazodinamike”, Vychisl. metody i programmirovanie, 4:2 (2003), 294–322

[52] Tarnavskii G. A., Korneev V. D., “Rasparallelivanie programmnogo kompleksa matematicheskogo modelirovaniya vysokoskorostnykh techenii realnogo gaza”, Avtometriya, 39:3 (2003), 72–83 | MR

[53] Rognlien T. D., Xu X. Q., Hindmarsh A. C., “Application of parallel imlicit methods to edge-plasma numerical simulations”, J. Comput. Phys., 175:1 (2002), 249–268 | Zbl

[54] Gingold R. A., Monaghan J. J., “Smoothed particle hydrodynamics – Theory and application to non-spherical stars”, Royal Astronomical Society, Monthly Notices, 181 (Nov. 1977), 375–389 | Zbl

[55] Rouch P., Vychislitelnaya gidrodinamika, Mir, M., 1980 | Zbl

[56] Krylov A. A., Mikhalin V. A., Savelev A. D., “Opyt primeneniya parabolicheskogo generatora setok v zadachakh vychislitelnoi gazovoi dinamiki”, ZhVMMF, 43:7 (2003), 1096–1106 | MR | Zbl

[57] Tarnavskii G. A., Shpak S. I., “Skhemy rasparallelivaniya operatsii resheniya sistem algebraicheskikh uravnenii metodom mnogomernoi skalyarnoi progonki”, Vychisl. metody i programmirovanie, 1:1 (2000), 21–29

[58] Vshivkov V. A., Tarnavskii G. A., Neupokoev E. V., “Parallelizatsiya algoritmov progonki: mnogotselevye vychislitelnye eksperimenty”, Avtometriya, 38:4 (2002), 74–86

[59] Springel V., Yoshida N., White S. D. M., “GADGET: A code for collisionless and gasdynamical cosmological simulations”, New Astronomy, 6 (2001), 51 | DOI

[60] Jubelgas M., Springel V., Dolag K., “Thermal conduction in cosmological SPH simulations”, MNRAS, 351 (2004), 423–435 | DOI

[61] Aliev A. V., “Modelirovanie uravnenii gazovoi dinamiki s uchetom samogravitatsii metodom sglazhennykh chastits”, Materialy XLIV Mezhdunarodnoi nauchnoi studencheskoi konferentsii “Student i nauchno-tekhnicheskii progress”: Matematik, Novosibirskii gos. un-t, Novosibirsk, 2006, 126–127

[62] Springel V., “The cosmological simulation code GADGET-2”, MNRAS, 364 (2005), 1105–1134 | DOI

[63] Benz W., “Smooth Particle Hydrodynamics: a review”, The Numerical Modeling of Nonlinear Stellar Pulsation, ed. J. R. Buchler, Kluwer Academic Publishers, 1990, 269–288

[64] Hernquist L., Katz N., “TreeSPH: A Unification of SPH with the Hierarchical Tree Method”, The Astrophysical Journal Supplements Series, 70 (1989 June), 419–446 | DOI

[65] Brian W. O'Shea, Greg Bryan, James Bordner, Michael L. Norman, Tom Abel, Robert Harkness, Alexei Kritsuk, Introducing Enzo, an AMR Cosmology Application, astro-ph/0403044

[66] Berezin Yu. A., Vshivkov V. A., Metod chastits v dinamike razrezhennoi plazmy, Nauka, Novosibirsk, 1980 | MR

[67] Frank A. M., “Chislennoe modelirovanie uderzhaniya shara struei zhidkosti”, Doklady RAN, 365:3 (1999), 346–349

[68] Vignjevic, Rade, Review of development of the Smooth Particle Hydrodynamics (SPH) method, December 2004

[69] Tarnavskii G. A., Shpak S. I., “Problemy chislennogo modelirovaniya sverkhzvukovogo laminarno-turbulentnogo obtekaniya tel konechnogo razmera”, Matematicheskoe modelirovanie, 10:6 (1998), 53–74

[70] Barnes J. E., $N$-Body Methods Resources, http://www.epcc.ed.ac.uk/~mario/nbody.htm

[71] Toro E. F., Riemann Solvers and Numerical Methods for Fluid Dynamics. A Practical Introduction, Second Edition, Springer-Verlag, June 1999, 624 pp. | MR