On metabelian groups with derived quotient an elementary abelian $2$-group of rank~$3$
Sibirskie èlektronnye matematičeskie izvestiâ, Tome 4 (2007), pp. 361-375.

Voir la notice de l'article provenant de la source Math-Net.Ru

Necessary and sufficient conditions in terms of rank and exponent for the existence of torsion-free metabelian groups with derived quotient an elementary abelian $p$-group of rank $k$ are formulated.
@article{SEMR_2007_4_a22,
     author = {V. V. Bludov and L. V. Dolbak},
     title = {On metabelian groups with derived quotient an elementary abelian $2$-group of rank~$3$},
     journal = {Sibirskie \`elektronnye matemati\v{c}eskie izvesti\^a},
     pages = {361--375},
     publisher = {mathdoc},
     volume = {4},
     year = {2007},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SEMR_2007_4_a22/}
}
TY  - JOUR
AU  - V. V. Bludov
AU  - L. V. Dolbak
TI  - On metabelian groups with derived quotient an elementary abelian $2$-group of rank~$3$
JO  - Sibirskie èlektronnye matematičeskie izvestiâ
PY  - 2007
SP  - 361
EP  - 375
VL  - 4
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/SEMR_2007_4_a22/
LA  - en
ID  - SEMR_2007_4_a22
ER  - 
%0 Journal Article
%A V. V. Bludov
%A L. V. Dolbak
%T On metabelian groups with derived quotient an elementary abelian $2$-group of rank~$3$
%J Sibirskie èlektronnye matematičeskie izvestiâ
%D 2007
%P 361-375
%V 4
%I mathdoc
%U http://geodesic.mathdoc.fr/item/SEMR_2007_4_a22/
%G en
%F SEMR_2007_4_a22
V. V. Bludov; L. V. Dolbak. On metabelian groups with derived quotient an elementary abelian $2$-group of rank~$3$. Sibirskie èlektronnye matematičeskie izvestiâ, Tome 4 (2007), pp. 361-375. http://geodesic.mathdoc.fr/item/SEMR_2007_4_a22/

[1] Furtwängler Ph., “Beweis der Hauptidealsatzes für den Klassenkörper algebraischer Zahlkörper”, Abh. Math. Sem. Hamburg. Univ., 7 (1930), 14–36

[2] Gupta N., Sidki S., “On torsion-free metabelian groups with commutator quotients of prime exponent”, Int. Journal of Algebra and Computation, 9 (1999), 493–520 | DOI | MR | Zbl

[3] Kopytov V. M., Medvedev N. Ya., Right ordered groups, Plenum Pub. Co., 1996 | MR

[4] Mura R. B., Rhemtulla A. H., Orderable Groups, Marcel Dekker, 1977 | MR

[5] Smirnov D. M., “One-sided orders on groups with ascending central series”, Algebra i logika, 6:2 (1967), 77–88 (Russian) | MR