Regular orbits of solvable linear $p'$-groups
Sibirskie èlektronnye matematičeskie izvestiâ, Tome 4 (2007), pp. 345-360.

Voir la notice de l'article provenant de la source Math-Net.Ru

In this paper we prove that a solvable linear $p'$-group $G\le GL(V)$, where $p$ is the characteristic of the underlying field of $V$, has a regular orbit on $V\times V$.
@article{SEMR_2007_4_a21,
     author = {E. P. Vdovin},
     title = {Regular orbits of solvable linear $p'$-groups},
     journal = {Sibirskie \`elektronnye matemati\v{c}eskie izvesti\^a},
     pages = {345--360},
     publisher = {mathdoc},
     volume = {4},
     year = {2007},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SEMR_2007_4_a21/}
}
TY  - JOUR
AU  - E. P. Vdovin
TI  - Regular orbits of solvable linear $p'$-groups
JO  - Sibirskie èlektronnye matematičeskie izvestiâ
PY  - 2007
SP  - 345
EP  - 360
VL  - 4
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/SEMR_2007_4_a21/
LA  - en
ID  - SEMR_2007_4_a21
ER  - 
%0 Journal Article
%A E. P. Vdovin
%T Regular orbits of solvable linear $p'$-groups
%J Sibirskie èlektronnye matematičeskie izvestiâ
%D 2007
%P 345-360
%V 4
%I mathdoc
%U http://geodesic.mathdoc.fr/item/SEMR_2007_4_a21/
%G en
%F SEMR_2007_4_a21
E. P. Vdovin. Regular orbits of solvable linear $p'$-groups. Sibirskie èlektronnye matematičeskie izvestiâ, Tome 4 (2007), pp. 345-360. http://geodesic.mathdoc.fr/item/SEMR_2007_4_a21/

[1] J. D. Dixon, “The Fitting subgroup of a linear solvable group”, J. Austral. Math. Soc., 7:4 (1967), 417–424 | DOI | MR | Zbl

[2] S. Dolfi, “Intersections of odd order Hall subgroups”, Bull. London Math. Soc., 37:1 (2005), 61–66 | DOI | MR | Zbl

[3] W. Feit, J. Thompson, “Solvability of groups of odd order”, Pacif. J. Math., 13:3 (1963), 775–1029 | MR | Zbl

[4] D. Gluck, O. Manz, “Prime factors of character degrees of solvable groups”, Bull. London Math. Soc., 19:5 (1987), 431–437 | DOI | MR | Zbl

[5] Z. Halasi, K. Podoski, On the Orbits of Solvable Linear Groups, arXiv: 0707.2873

[6] I. M. Isaacs, “Large orbits in actions of nilpotent groups”, Proc. Amer. Math. Soc., 127:1 (1999), 45–50 | DOI | MR | Zbl

[7] A. Jianbei, “$2$-Weights for General Linear Groups”, J. Algebra, 149:2 (1992), 500–527 | DOI | MR | Zbl

[8] P. Kleidman, M. Liebeck, The Subgroup Structure of the Finite Classical Groups, London Math. Soc. Lect. Notes, 129, Cambridge University Press, 1990 | MR | Zbl

[9] P. P. Palfy, “Bounds for linear groups of odd order”, Proc. Second Internat. Group Theory Conf. (Bressanone/Brixen, 1989), Suppl. Rend. Circ. Mat. Palermo, 23, 1990, 253–263 | MR | Zbl

[10] D. S. Passman, “Groups with normal solvable Hall $p'$-subgroups”, Trans. Amer. Math. Soc., 123:1 (1966), 99–111 | MR | Zbl

[11] Y. Segev, “On completely reducible solvable subgroups of $GL(n,\Delta)$”, Israel J. Math., 51:1–2 (1985), 163–176 | DOI | MR | Zbl

[12] A. Seress, “The minimal base size of primitive solvable permutation groups”, J. London Math. Soc. (2), 53 (1996), 243–255 | MR | Zbl

[13] D. A. Suprunenko, Matrix groups, AMS, Providence, RI, 1976 | MR

[14] D. A. Suprunenko, Solvable and nilpotent linear groups, Minsk, 1958 (In Russian) | MR | Zbl

[15] T. R. Wolf, “Solvable and nilpotent subgroups of $GL_n(q^m)$”, Canad. J. Math., 34:5 (1982), 1097–1111 | MR | Zbl

[16] V. I. Zenkov, “Intersections of nilpotent subgroups in finite groups”, Fund. Prikl. Mat., 2:1 (1996), 1–92 | MR | Zbl

[17] The GAP Group, GAP – Groups, Algorithms, and Programming, Version 4.4.10, , 2007 http://www.gap-system.org