Voir la notice de l'article provenant de la source Math-Net.Ru
@article{SEMR_2007_4_a2, author = {A. L. Karchevsky}, title = {Algorithm for reconstruction of the elastic constants of an anisotropic layer lying in an isotropic horizontally stratified medium}, journal = {Sibirskie \`elektronnye matemati\v{c}eskie izvesti\^a}, pages = {20--51}, publisher = {mathdoc}, volume = {4}, year = {2007}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/SEMR_2007_4_a2/} }
TY - JOUR AU - A. L. Karchevsky TI - Algorithm for reconstruction of the elastic constants of an anisotropic layer lying in an isotropic horizontally stratified medium JO - Sibirskie èlektronnye matematičeskie izvestiâ PY - 2007 SP - 20 EP - 51 VL - 4 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/SEMR_2007_4_a2/ LA - ru ID - SEMR_2007_4_a2 ER -
%0 Journal Article %A A. L. Karchevsky %T Algorithm for reconstruction of the elastic constants of an anisotropic layer lying in an isotropic horizontally stratified medium %J Sibirskie èlektronnye matematičeskie izvestiâ %D 2007 %P 20-51 %V 4 %I mathdoc %U http://geodesic.mathdoc.fr/item/SEMR_2007_4_a2/ %G ru %F SEMR_2007_4_a2
A. L. Karchevsky. Algorithm for reconstruction of the elastic constants of an anisotropic layer lying in an isotropic horizontally stratified medium. Sibirskie èlektronnye matematičeskie izvestiâ, Tome 4 (2007), pp. 20-51. http://geodesic.mathdoc.fr/item/SEMR_2007_4_a2/
[1] G. V. Akkuratov, V. I. Dmitriev, “Metod rascheta polya ustanovivshikhsya uprugikh kolebanii v sloistoi srede”, Chislennye metody v geofizike, MGU, Moskva, 1979, 3–12
[2] G. V. Akkuratov, V. I. Dmitriev, “Metod rascheta polya ustanovivshikhsya uprugikh kolebanii v sloistoi srede”, Zhurnal vychislitelnoi matematiki i matematicheskoi fiziki, 24 (1984), 272–286 | MR | Zbl
[3] A. G. Fatyanov, B. G. Mikhailenko, “Metod rascheta nestatsionarnykh volnovykh polei v neuprugikh sloisto-neodnorodnykh sredakh”, Doklady RAN, 301 (1988), 834–839
[4] A. G. Fatyanov, Nestatsionarnye seismicheskie volnovye polya v neodnorodnykh anizotropnykh sredakh s pogloscheniem energii, Preprint VTs SO AN No 857, Novosibirsk, 1989 | MR
[5] A. G. Fatyanov, “Poluanaliticheskii metod resheniya pryamykh dinamicheskikh zadach v sloistykh sredakh”, Doklady RAN, 310 (1990), 323–327 | MR
[6] V. M. Pavlov, “A convienent technique for calculating synthetic seismograms in layered half-space”, Proceedings of the International Conference “Problems of Geocosmos” (St. Peteburg, 03–08 June 2002), 320–323
[7] A. L. Karchevsky, “A numerical solution to a system of elasticity equations for layered anisotropic media”, Russian Geology and Geophysics, 46:3 (2005), 339–351
[8] A. L. Karchevskii, “Pryamaya dinamicheskaya zadacha seismiki dlya gorizontalno-sloistykh sred”, Sibirskie Elektronnye Matematicheskie Izvestiya, 2 (2005), 23–61 http://www.emis.ams.org/journals/SEMR/V2/v2p23-61.pdf | MR | Zbl
[9] A. L. Karchevsky, “Several remarks on numerical solution of the one-dimensional coefficient inverse problem”, Journal of Inverse and Ill-Posed Problems, 10 (2002), 361–384 | MR
[10] E. Kurpinar, A. L. Karchevsky, “Numerical solution of the inverse problem for the elasticity system for horizontally stratified media”, Inverse Problems, 20 (2004), 953–976 | DOI | MR | Zbl
[11] A. L. Karchevsky, “The analytical formulas for the gradient of the residual functional for the coefficient inverse problem for the elasticity system”, Journal of Inverse and Ill-Posed Problems, 11 (2003), 619–629 | DOI | MR | Zbl
[12] E. Kurpinar, A. L. Karchevsky, “Optimization inversion of seismic data from layered media: an algorithm for gradient”, Russian Geology and Geophysics, 46:4 (2005), 439–447
[13] A. L. Karchevsky, “Numerical reconstruction of medium parameters of member of thin anisotropic layers”, Journal of Inverse and Ill-Posed Problems, 12 (2004), 519–634 | DOI | MR
[14] A. L. Karchevskii, “Analiz resheniya obratnoi dinamicheskoi zadachi seismiki dlya gorizontalno-sloistoi anizotropnoi sredy”, Geologiya i Geofizika, 2006 (to appear)
[15] A. L. Karchevsky, “Numerical solution of the inverse problem for the system of elasticity for verticaly inhomogeneous medium”, Bulletin of the Novosibirsk Computing Center, series Mathematical Modeling in Geophysics, 5 (1999), 63–69 | Zbl
[16] A. L. Karchevskii, “Chislennoe reshenie odnomernoi obratnoi zadachi dlya sistemy uprugosti”, Doklady RAN, 375 (2000), 235–238
[17] A. L. Karchevskii, A. G. Fatyanov, “Chislennoe reshenie obratnoi zadachi dlya sistemy uprugosti s posledeistviem dlya vertikalno neodnorodnoi sredy”, Sibirskii zhurnal vychislitelnoi matematiki, 4 (2001), 259–269
[18] G. I. Petrashen, B. M. Kashtan, A. A. Kovtun, I. V. Mukhina, “Metod konturnykh integralov v sluchae transversalno-izotropnykh sred s osyu simmetrii, normalnoi granitsam razdela”, Voprosy dinamicheskoi teorii rasprostraneniya seismicheskikh voln, 24, ed. G. I. Petrashen, Nauka, Leningrad, 1984, 4–91 | MR
[19] A. Bakulin, V. Grechka, I. Tsvankin, “Estimation of fracture parameters from reflection seismic data”, Part I, II, III, Geophysics, 65 (2000), 1788–1830 | DOI
[20] S. G. Lekhnitskii, Teoriya uprugosti anizotropnogo tela, Gos. izd. tekhniko-teoreticheskoi literatury, Moskva, Leningrad, 1950 | MR