Periodic groups saturated by the group $U_3(9)$
Sibirskie èlektronnye matematičeskie izvestiâ, Tome 4 (2007), pp. 300-303.

Voir la notice de l'article provenant de la source Math-Net.Ru

Let $\mathfrak{M}$ be a set of finite groups. A group $G$ is said to be saturated by $\mathfrak{M}$, if every finite subgroup of $G$ is contained in a subgroup isomorphic to a group from $\mathfrak{M}$. We prove that a periodic group saturated by set consisting of the single finite simple group $U_3(9)=PSU_3(81)$ is isomorphic to $U_3(9)$.
@article{SEMR_2007_4_a19,
     author = {D. V. Lytkina},
     title = {Periodic groups saturated by the group $U_3(9)$},
     journal = {Sibirskie \`elektronnye matemati\v{c}eskie izvesti\^a},
     pages = {300--303},
     publisher = {mathdoc},
     volume = {4},
     year = {2007},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SEMR_2007_4_a19/}
}
TY  - JOUR
AU  - D. V. Lytkina
TI  - Periodic groups saturated by the group $U_3(9)$
JO  - Sibirskie èlektronnye matematičeskie izvestiâ
PY  - 2007
SP  - 300
EP  - 303
VL  - 4
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/SEMR_2007_4_a19/
LA  - en
ID  - SEMR_2007_4_a19
ER  - 
%0 Journal Article
%A D. V. Lytkina
%T Periodic groups saturated by the group $U_3(9)$
%J Sibirskie èlektronnye matematičeskie izvestiâ
%D 2007
%P 300-303
%V 4
%I mathdoc
%U http://geodesic.mathdoc.fr/item/SEMR_2007_4_a19/
%G en
%F SEMR_2007_4_a19
D. V. Lytkina. Periodic groups saturated by the group $U_3(9)$. Sibirskie èlektronnye matematičeskie izvestiâ, Tome 4 (2007), pp. 300-303. http://geodesic.mathdoc.fr/item/SEMR_2007_4_a19/

[1] A. K. Shlepkin, A. G. Rubashkin, “Groups saturated by a finite set of groups”, Siberian Math. J., 45:6 (2004), 1140–1142 | DOI | MR | Zbl

[2] A. S. Kondratiev, V. D. Mazurov, “2-signalizers of finite simple groups”, Algebra and Logic, 42:5 (2003) | DOI | MR

[3] J. L. Alperin, R. Brauer, D. Gorenstein, “Finite groups with quasi-dihedral and wreathed Sylow 2-subgroups”, Trans. Amer. Math. Soc., 151:1 (1970), 1–261 | MR | Zbl

[4] J. H. Conway, R. T. Curtis, S. P. Norton, R. A. Parker, R. A. Wilson, Atlas of finite groups, Clarendon Press, Oxford, 1985 | MR | Zbl

[5] V. P. Shunkov, “On periodic groups with an almost regular involution”, Algebra and Logic, 11:4 (1972), 260–272 | DOI | MR | Zbl

[6] The GAP group. GAP-Groups, Algorithms, and Programming, Version 4.4.6, , 2005 http://www.gap-system.org