Solvability of the initial boundary-value problems for hyperbolic model of ideal incompressible liquid motion
Sibirskie èlektronnye matematičeskie izvestiâ, Tome 4 (2007), pp. 282-291.

Voir la notice de l'article provenant de la source Math-Net.Ru

We consider rotationally-symmetrical solutions to Euler equations with a linear dependence of axial component of velocity on axial coordinate. By methods of group analysis of differential equations these equations were reduced to one hyperbolic equation of the fourth order. For this equation a local in time unique solvability of initial boundary-value problem was proved. Also, for this equation a generalized Goursat problem was considered. There were formulated sufficient conditions of its solution non-existence and conditions of classical solution existence in case it is defined for all values of the radial coordinate. It is established that in the class of considered solutions to Euler equations, setting up initial velocity field in whole space does not determine the solution to Cauchy problem uniquely.
@article{SEMR_2007_4_a16,
     author = {E. Yu. Meshcheryakova},
     title = {Solvability of the initial boundary-value problems for hyperbolic model of ideal incompressible liquid motion},
     journal = {Sibirskie \`elektronnye matemati\v{c}eskie izvesti\^a},
     pages = {282--291},
     publisher = {mathdoc},
     volume = {4},
     year = {2007},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/SEMR_2007_4_a16/}
}
TY  - JOUR
AU  - E. Yu. Meshcheryakova
TI  - Solvability of the initial boundary-value problems for hyperbolic model of ideal incompressible liquid motion
JO  - Sibirskie èlektronnye matematičeskie izvestiâ
PY  - 2007
SP  - 282
EP  - 291
VL  - 4
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/SEMR_2007_4_a16/
LA  - ru
ID  - SEMR_2007_4_a16
ER  - 
%0 Journal Article
%A E. Yu. Meshcheryakova
%T Solvability of the initial boundary-value problems for hyperbolic model of ideal incompressible liquid motion
%J Sibirskie èlektronnye matematičeskie izvestiâ
%D 2007
%P 282-291
%V 4
%I mathdoc
%U http://geodesic.mathdoc.fr/item/SEMR_2007_4_a16/
%G ru
%F SEMR_2007_4_a16
E. Yu. Meshcheryakova. Solvability of the initial boundary-value problems for hyperbolic model of ideal incompressible liquid motion. Sibirskie èlektronnye matematičeskie izvestiâ, Tome 4 (2007), pp. 282-291. http://geodesic.mathdoc.fr/item/SEMR_2007_4_a16/

[1] V. V. Pukhnachev, “Tochnye resheniya uravnenii gidrodinamiki, postroennye na osnove chastichno invariantnykh”, PMTF, 44:3 (2003), 18–25 | MR | Zbl

[2] M. R. Ukhovskii, V. I. Yudovich, “Osesimmetrichnye techeniya idealnoi i vyazkoi zhidkosti, zapolnyayuschei vse prostranstvo”, PMM, 32:1 (1968), 59–69 | MR

[3] L. V. Ovsyannikov, Gruppovoi analiz differentsialnykh uravnenii, Nauka, Moskva, 1978 | MR

[4] V. V. Pukhnachev, “Novyi klass tochnykh reshenii uravnenii Eilera”, Dokl. RAN, 382:6 (2002), 777–780 | MR

[5] E. Yu. Mescheryakova, “Tochnye resheniya uravnenii vraschatelno-simmetrichnogo dvizheniya idealnoi neszhimaemoi zhidkosti”, PMTF, 43:3 (2002), 66–75 | MR

[6] E. Yu. Mescheryakova, “O novykh statsionarnykh i avtomodelnykh resheniyakh uravnenii Eilera”, PMTF, 44:4 (2003), 3–9 | MR

[7] V. V. Pukhnachev, “Simmetrii v uravneniyakh Nave–Stoksa”, Uspekhi mekhaniki, 4:1 (2006), 6–76 | MR

[8] E. Yu. Mescheryakova, V. V. Pukhnachev, “Integriruemye modeli vraschatelno-simmetrichnogo dvizheniya idealnoi neszhimaemoi zhidkosti”, Dokl. RAN, 412:2 (2007), 188–192 | MR