Graphs and models with finite chains
Sibirskie èlektronnye matematičeskie izvestiâ, Tome 4 (2007), pp. 238-248.

Voir la notice de l'article provenant de la source Math-Net.Ru

We investigate some properties of graphs with finite simple chains. In every countably categorical infinite graph there is a subgraph, which could be obtained from the infinite complete graph by the exshanging of some chains of the fixed lenght by edges. Classes of all graphs with finite chains and all finite graphs have the same elementary theory. The elementary theory of every graph of the finite lenght desidable. At the end we also introduce the notion. Of the graph of an arbitrary structure and shows that all obtained facts remaines true for classes of structures which graphs have prescribed properties.
@article{SEMR_2007_4_a13,
     author = {A. T. Nurtazin},
     title = {Graphs and models with finite chains},
     journal = {Sibirskie \`elektronnye matemati\v{c}eskie izvesti\^a},
     pages = {238--248},
     publisher = {mathdoc},
     volume = {4},
     year = {2007},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/SEMR_2007_4_a13/}
}
TY  - JOUR
AU  - A. T. Nurtazin
TI  - Graphs and models with finite chains
JO  - Sibirskie èlektronnye matematičeskie izvestiâ
PY  - 2007
SP  - 238
EP  - 248
VL  - 4
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/SEMR_2007_4_a13/
LA  - ru
ID  - SEMR_2007_4_a13
ER  - 
%0 Journal Article
%A A. T. Nurtazin
%T Graphs and models with finite chains
%J Sibirskie èlektronnye matematičeskie izvestiâ
%D 2007
%P 238-248
%V 4
%I mathdoc
%U http://geodesic.mathdoc.fr/item/SEMR_2007_4_a13/
%G ru
%F SEMR_2007_4_a13
A. T. Nurtazin. Graphs and models with finite chains. Sibirskie èlektronnye matematičeskie izvestiâ, Tome 4 (2007), pp. 238-248. http://geodesic.mathdoc.fr/item/SEMR_2007_4_a13/

[1] G. Kreisler, Ch. Ch. Chen, Teoriya modelei, M., 1977, 614 pp. | MR

[2] Nurtazin A. T., “Bazisnye sovokupnosti i eliminatsiya kvantorov” (to appear)

[3] Ore O., Teoriya grafov, Nauka, M., 1980, 336 pp. | MR

[4] Taimanov A. D., “Kharakteristiki aksiomatiziruemykh klassov modelei”, Algebra i logika, 1:4 (1962), 5–32 | MR

[5] Behman H., “Beitrage zum Algebra der Logic, insbesondere zum Entseheidungsproblem”, Math. Ann., 86 (1922), 163–220 | DOI | MR

[6] Ehrenfeucht A., “An application of games to the completeness problem for formalized theories”, Fund. Math., 49, 129–141 | MR | Zbl

[7] Fraisse R., “Sur quelques classificacions des systemes de velations”, Publ. Sci. Univ. Alger, Ser. A, 1 (1954), 35–182 | MR

[8] Gaifman H., “On local and nonlocal properties”, Proceedings of the Herbrand Symposium, Log. Colloquium' 81, North-Holland Publ. Company, 1982, 105–135 | MR

[9] Herre H., Mecler A. H., Smith K. W., “Superstable graphs”, Fund. Math., 118:2 (1983), 75–79 | MR | Zbl

[10] Podewsky K. and Ziegler M., “Stable graphs”, Fund. Math., 100 (1978), 101–107 | MR

[11] Ramsey F. P., “On a problem in formal logic”, Proc. Math. Soc., Ser. 2, 30, 264–286 | DOI | Zbl

[12] Ryll-Nardzewski, “On the categoricity in power $N_0$”, Bull. Polon. Sci. Ser. Sci. Math. Astron. Phys., 7, 545–548 | MR | Zbl