On finite $3$-generated $2$-groups of Alperin
Sibirskie èlektronnye matematičeskie izvestiâ, Tome 4 (2007), pp. 155-168

Voir la notice de l'article provenant de la source Math-Net.Ru

We prove a theorem about the structure of the commutant of a finite $2$-group in which every $2$-generated subgroup has a cyclic commutant and the group itself is generated by $3$ involutions. Also we construct two infinite series of such groups with the second commutant of order $2$ and $4$.
@article{SEMR_2007_4_a11,
     author = {B. M. Veretennikov},
     title = {On finite $3$-generated $2$-groups of {Alperin}},
     journal = {Sibirskie \`elektronnye matemati\v{c}eskie izvesti\^a},
     pages = {155--168},
     publisher = {mathdoc},
     volume = {4},
     year = {2007},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/SEMR_2007_4_a11/}
}
TY  - JOUR
AU  - B. M. Veretennikov
TI  - On finite $3$-generated $2$-groups of Alperin
JO  - Sibirskie èlektronnye matematičeskie izvestiâ
PY  - 2007
SP  - 155
EP  - 168
VL  - 4
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/SEMR_2007_4_a11/
LA  - ru
ID  - SEMR_2007_4_a11
ER  - 
%0 Journal Article
%A B. M. Veretennikov
%T On finite $3$-generated $2$-groups of Alperin
%J Sibirskie èlektronnye matematičeskie izvestiâ
%D 2007
%P 155-168
%V 4
%I mathdoc
%U http://geodesic.mathdoc.fr/item/SEMR_2007_4_a11/
%G ru
%F SEMR_2007_4_a11
B. M. Veretennikov. On finite $3$-generated $2$-groups of Alperin. Sibirskie èlektronnye matematičeskie izvestiâ, Tome 4 (2007), pp. 155-168. http://geodesic.mathdoc.fr/item/SEMR_2007_4_a11/