Voir la notice de l'article provenant de la source Math-Net.Ru
@article{SEMR_2007_4_a10, author = {A. M. Meirmanov}, title = {Darcy's law in anisothermic porous medium}, journal = {Sibirskie \`elektronnye matemati\v{c}eskie izvesti\^a}, pages = {141--154}, publisher = {mathdoc}, volume = {4}, year = {2007}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/SEMR_2007_4_a10/} }
A. M. Meirmanov. Darcy's law in anisothermic porous medium. Sibirskie èlektronnye matematičeskie izvestiâ, Tome 4 (2007), pp. 141-154. http://geodesic.mathdoc.fr/item/SEMR_2007_4_a10/
[1] A. M. Meirmanov, S. A. Sazhenkov, Generalized solutions to the linearized equations of thermoelastic solid and viscous thermofluid, 12 Nov 2006, arXiv: math/0611350 | MR
[2] G. Nguetseng, “A general convergence result for a functional related to the theory of homogenization”, SIAM J. Math. Anal., 20 (1989), 608–623 | DOI | MR | Zbl
[3] D. Lukkassen, G. Nguetseng, P. Wall, “Two-scale convergence”, Int. J. Pure and Appl. Math., 2:1 (2002), 35–86 | MR | Zbl
[4] R. Burridge, J. B. Keller, “Poroelasticity equations derived from microstructure”, J. Acoust. Soc. Am., 70:4 (1981), 1140–1146 | DOI | Zbl
[5] E. Sanches-Palensiya, Neodnorodnye sredy i teoriya vibratsii, Mir, Moskva, 1984 | MR
[6] G. Nguetseng, “Asymptotic analysis for a stiff variational problem arising in mechanics”, SIAM J. Math. Anal., 21 (1990), 1394–1414 | DOI | MR | Zbl
[7] R. P. Gilbert, A. Mikelić, “Homogenizing the acoustic properties of the seabed: Part I”, Nonlinear Analysis, 40 (2000), 85–212 | DOI | MR
[8] Th. Clopeau, J. L. Ferrin, R. P. Gilbert, A. Mikelić, “Homogenizing the acoustic properties of the seabed: Part II”, Mathematical and Computer Modelling, 33 (2001), 821–841 | DOI | MR | Zbl
[9] J. L. Ferrin, A. Mikelić, “Homogenizing the acoustic properties of a porous matrix containing an incompressible inviscid fluids”, Math. Meth. Appl. Sci., 26 (2003), 831–859 | DOI | MR | Zbl
[10] A. M. Meirmanov, Nguetseng's two-scale convergence method for filtration and seismic acoustic problems in elastic porous media, 11 Nov 2006, arXiv: math/0611330
[11] E. Acerbi, V. Chiado Piat, G. Dal Maso, D. Percivale, “An extension theorem from connected sets and homogenization in general periodic domains”, Nonlinear Anal., 18 (1992), 481–496 | DOI | MR | Zbl
[12] V. V. Zhikov, S. M. Kozlov, O. A. Oleinik, Usrednenie differentsialnykh operatorov, Nauka, Moskva, 1993 | MR | Zbl
[13] O. A. Ladyzhenskaya, Matematicheskie voprosy dinamiki vyazkoi neszhimaemoi zhidkosti, Nauka, Moskva, 1970 | MR