A~study associated with critical Level Resonance in 2-D Flow over Isolated Ridges
Sibirskie èlektronnye matematičeskie izvestiâ, Tome 3 (2006), pp. 161-168

Voir la notice de l'article provenant de la source Math-Net.Ru

A linear hydrostatic model of a stably stratified upwind profile for backward linear shear with a critical level (the wind speed $U=0$) over a two-dimensional orographic barrier having two infinitely long ridges is considered. Analytical expressions for the mountain wave drag, energy flux and surface pressure perturbation are obtained. The results are illustrated by graphs of the mountain drag and the surface pressure for the flow with the Richardson number $R_i=1$ and $R_i\gg1$.
@article{SEMR_2006_3_a9,
     author = {Naresh Kumar and Naseem Ahmad and S. K. Roy Bhowmik},
     title = {A~study associated with critical {Level} {Resonance} in {2-D} {Flow} over {Isolated} {Ridges}},
     journal = {Sibirskie \`elektronnye matemati\v{c}eskie izvesti\^a},
     pages = {161--168},
     publisher = {mathdoc},
     volume = {3},
     year = {2006},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SEMR_2006_3_a9/}
}
TY  - JOUR
AU  - Naresh Kumar
AU  - Naseem Ahmad
AU  - S. K. Roy Bhowmik
TI  - A~study associated with critical Level Resonance in 2-D Flow over Isolated Ridges
JO  - Sibirskie èlektronnye matematičeskie izvestiâ
PY  - 2006
SP  - 161
EP  - 168
VL  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/SEMR_2006_3_a9/
LA  - en
ID  - SEMR_2006_3_a9
ER  - 
%0 Journal Article
%A Naresh Kumar
%A Naseem Ahmad
%A S. K. Roy Bhowmik
%T A~study associated with critical Level Resonance in 2-D Flow over Isolated Ridges
%J Sibirskie èlektronnye matematičeskie izvestiâ
%D 2006
%P 161-168
%V 3
%I mathdoc
%U http://geodesic.mathdoc.fr/item/SEMR_2006_3_a9/
%G en
%F SEMR_2006_3_a9
Naresh Kumar; Naseem Ahmad; S. K. Roy Bhowmik. A~study associated with critical Level Resonance in 2-D Flow over Isolated Ridges. Sibirskie èlektronnye matematičeskie izvestiâ, Tome 3 (2006), pp. 161-168. http://geodesic.mathdoc.fr/item/SEMR_2006_3_a9/