Systems of equations in commutating variables for free products of Abelian groups
Sibirskie èlektronnye matematičeskie izvestiâ, Tome 3 (2006), pp. 155-160.

Voir la notice de l'article provenant de la source Math-Net.Ru

The objective of this paper is to continue the development of algebraic geometry over groups. We give a classification of coordinate groups of systems of equations with commutting variables over free products of abelian groups.
@article{SEMR_2006_3_a8,
     author = {E. S. Esyp},
     title = {Systems of equations in commutating variables for free products of {Abelian} groups},
     journal = {Sibirskie \`elektronnye matemati\v{c}eskie izvesti\^a},
     pages = {155--160},
     publisher = {mathdoc},
     volume = {3},
     year = {2006},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/SEMR_2006_3_a8/}
}
TY  - JOUR
AU  - E. S. Esyp
TI  - Systems of equations in commutating variables for free products of Abelian groups
JO  - Sibirskie èlektronnye matematičeskie izvestiâ
PY  - 2006
SP  - 155
EP  - 160
VL  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/SEMR_2006_3_a8/
LA  - ru
ID  - SEMR_2006_3_a8
ER  - 
%0 Journal Article
%A E. S. Esyp
%T Systems of equations in commutating variables for free products of Abelian groups
%J Sibirskie èlektronnye matematičeskie izvestiâ
%D 2006
%P 155-160
%V 3
%I mathdoc
%U http://geodesic.mathdoc.fr/item/SEMR_2006_3_a8/
%G ru
%F SEMR_2006_3_a8
E. S. Esyp. Systems of equations in commutating variables for free products of Abelian groups. Sibirskie èlektronnye matematičeskie izvestiâ, Tome 3 (2006), pp. 155-160. http://geodesic.mathdoc.fr/item/SEMR_2006_3_a8/

[1] Chiswell I. M., Remeslennikov V. N., “Equations in Free Groups with One Variable”, J. Group Theory, 3:4 (2000), 455–466 | DOI | MR

[2] Baumslag G., Myasnikov A., Remeslennikov V., “Algebraic geometry over groups I. Algebraic sets and ideal theory”, J. Algebra, 219 (1999), 16–79 | DOI | MR | Zbl

[3] Myasnikov A., Remeslennikov V., “Algebraic geometry over groups II. Logical foudations”, J. Algebra, 234 (2000), 225–276 | DOI | MR | Zbl

[4] Remeslennikov V. N., “$\exists$-svobodnye gruppy”, Sibirskii matematicheskii zhurnal, 30:6 (1989), 153–157 | MR

[5] Kharlampovich O., Myasnikov A., “Irreducible affine varieties over a free group I. Irreducibility of quadratic equations and Nullstellensatz”, J. Algebra, 200 (1998), 472–516 | DOI | MR | Zbl

[6] Kharlampovich O., Myasnikov A., “Irreducible affine varieties over a free group II. Systems in triangular quasi-quadratic form and description of residually free groups”, J. Algebra, 200:2 (1998), 517–570 | DOI | MR | Zbl

[7] Chapius O., “$\forall$-free metabelian groups”, J. Symbolic Logic, 62:1 (1997), 159–174 | DOI | MR

[8] Remeslennikov V., Stohr R., On quasivariety generated by a free noncyclic metabelian group, Preprint, UMIST, Manchester, 2001

[9] Appel K. I., “One-variable equations in free groups”, Proc. Amer. Math. Soc., 19 (1968), 912–918 | DOI | MR

[10] Lorents A. A., “Resheniya sistem uravnenii s odnim neizvestnym v svobodnykh gruppakh”, Dokl. AN SSSR, 148:6 (1963), 1253–1256 | Zbl

[11] Lorents A. A., “O predstavleniyakh mnozhestv reshenii sistem uravnenii s odnim neizvestnym v svobodnykh gruppakh”, Dokl. AN SSSR, 178:2 (1968), 290–292 | Zbl

[12] Lyndon R. C., “Equations in free groups”, Trans. Amer. Math. Soc., 96 (1960), 445–457 | MR | Zbl

[13] Fedoseeva Yu. M., Algebraicheskie mnozhestva nad abelevymi i nilpotentnymi gruppami, Dissertatsiya na soiskanie uchenoi stepeni kandidata fiziko-matematicheskikh nauk, OmGU, Omsk, 1998

[14] Esyp E. S., “Sistemy uravnenii ot odnoi neizvestnoi dlya svobodnykh proizvedenii abelevykh grupp”, Matematicheskie struktury i modelirovanie: Sb. nauchn. tr., v. 7, OmGU, Omsk, 2001, 28–45 http://iitam.omsk.net.ru/~esyp/my_papers/esyp.msm.pdf | MR

[15] Lyndon R. C., Schutzenberger M. P., “The equation $a^M=b^Nc^P$ in free group”, Michigan Math. J., 9 (1962), 289–298 | DOI | MR | Zbl

[16] Baumslag G., Myasnikov A., Remeslennikov V., “Algebraic geometry over groups I. Algebraic sets and ideal theory”, Journal of Algebra, 219 (1999), 16–79 | DOI | MR | Zbl

[17] Myasnikov A., Remeslennikov V., “Algebraic geometry over groups II. Logical Foundations”, Journal of Algebra, 234 (2000), 225–276 | DOI | MR | Zbl